自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(5)
  • 收藏
  • 关注

原创 线性回归的梯度下降

在前两篇文章中介绍了线性回归模型,梯度下降算法,代价函数。这篇文章主要是将梯度下降算法与代价函数结合得到线性回归算法,使其可用来拟合直线模型。如下图,左边为梯度下降算法,右边为假设函数h以及代价函数J,我们要做的就是将梯度下降算法应用到最小化代价函数。在将代价函数代入到梯度下降算法时,需要注意一点也是比较难理解的一点就是对代价函数求偏导,需注意求偏导时自变量是谁,是0和1,所以是对0和1分别求偏导,这里不妨将这个偏导设为Z。当对0求偏导时,根据显函数的求偏导的法则,先对平方项整体求一次导出来..

2022-04-23 18:05:04 1226

原创 机器学习之梯度下降

梯度下降算法适用于许多函数,不单单可以求出线性回归函数的最小值。求最小值过程为,先设定初始的0,1,往往都设置为零,然后逐渐的移动0,1去减少代价函数J,直到找到函数J的最小值梯度下降算法有一个特点就是选择不同的起始点,会得到不同的局部最优解。梯度下降算法的数学原理,在公式中被称为学习率,用来控制梯度下降时我们迈多大的步子,越大则梯度下降越快。需注意在进行计算梯度下降算法时,需要对每个参数同时进行求偏导,并同时更新。...

2022-04-21 10:24:51 285

原创 机器学习之线性回归

本文主要介绍监督学习的线性回归算法。前导知识:其中m表示数据集的个数,x表示输入值或者是事物的特征或属性,y表示输出值或者预期值。(x,y)表示一个训练样本。如果想要表示具体的训练样本需要加上上标。监督学习算法工作流程:将一些数据集交给学习算法,学习算法将给出一个函数(h),通过该函数可以通过输入值预测输出值。在线性回归中函数h为一元函数怎样判断函数h与实际数据的拟合度?这里引入了代价函数J,代价函数J是关于0与1的函数,即方差再除以1/2.函数J值的大小反映了假设函数h的拟合度,代价函

2022-04-18 21:46:27 588

原创 什么是监督学习?什么是无监督学习?

监督学习

2022-04-14 21:51:10 1375

原创 什么是机器学习?什么情况下使用机器学习?

什么是机器学习?答:Arthur Samuel :机器学习是在没有明确设置的情况下,使计算机具有学习能力的研究领域。Tom Mitchell:机器学习是计算机程序从经验E中学习,解决某一任务T,进行某一性能度量P,通过性能度量P来测定在任务T上的表现因经验E而提高。举例:如跳棋游戏,经验E为程序与自己下几万次跳棋,任务T就是玩跳棋,性能度量P是与新对手玩跳棋时赢得概率。考查举例:现有一程序以实现自动过滤垃圾邮件邮件的功能。试回答那个是E,T,P?1.将邮件分类为垃圾邮件或者不是垃圾邮

2022-04-09 11:16:43 1384

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除