线性回归的梯度下降
在前两篇文章中介绍了线性回归模型,梯度下降算法,代价函数。这篇文章主要是将梯度下降算法与代价函数结合得到线性回归算法,使其可用来拟合直线模型。如下图,左边为梯度下降算法,右边为假设函数h以及代价函数J,我们要做的就是将梯度下降算法应用到最小化代价函数。在将代价函数代入到梯度下降算法时,需要注意一点也是比较难理解的一点就是对代价函数求偏导,需注意求偏导时自变量是谁,是0和1,所以是对0和1分别求偏导,这里不妨将这个偏导设为Z。当对0求偏导时,根据显函数的求偏导的法则,先对平方项整体求一次导出来..




