机器学习取经人
码龄5年
关注
提问 私信
  • 博客:4,966
    社区:1
    4,967
    总访问量
  • 5
    原创
  • 2,144,933
    排名
  • 0
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:河南省
  • 加入CSDN时间: 2020-05-28
博客简介:

air_force1的博客

查看详细资料
个人成就
  • 获得1次点赞
  • 内容获得0次评论
  • 获得2次收藏
创作历程
  • 5篇
    2022年
成就勋章
创作活动更多

新星杯·14天创作挑战营·第9期

这是一个以写作博客为目的的创作活动,旨在鼓励大学生博主们挖掘自己的创作潜能,展现自己的写作才华。如果你是一位热爱写作的、想要展现自己创作才华的小伙伴,那么,快来参加吧!我们一起发掘写作的魅力,书写出属于我们的故事。我们诚挚邀请你们参加为期14天的创作挑战赛! 注: 1、参赛者可以进入活动群进行交流、分享创作心得,互相鼓励与支持(开卷),答疑及活动群请见 https://bbs.csdn.net/topics/619626357 2、文章质量分查询:https://www.csdn.net/qc

475人参与 去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

线性回归的梯度下降

在前两篇文章中介绍了线性回归模型,梯度下降算法,代价函数。这篇文章主要是将梯度下降算法与代价函数结合得到线性回归算法,使其可用来拟合直线模型。如下图,左边为梯度下降算法,右边为假设函数h以及代价函数J,我们要做的就是将梯度下降算法应用到最小化代价函数。在将代价函数代入到梯度下降算法时,需要注意一点也是比较难理解的一点就是对代价函数求偏导,需注意求偏导时自变量是谁,是0和1,所以是对0和1分别求偏导,这里不妨将这个偏导设为Z。当对0求偏导时,根据显函数的求偏导的法则,先对平方项整体求一次导出来..
原创
发布博客 2022.04.23 ·
1241 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

机器学习之梯度下降

梯度下降算法适用于许多函数,不单单可以求出线性回归函数的最小值。求最小值过程为,先设定初始的0,1,往往都设置为零,然后逐渐的移动0,1去减少代价函数J,直到找到函数J的最小值梯度下降算法有一个特点就是选择不同的起始点,会得到不同的局部最优解。梯度下降算法的数学原理,在公式中被称为学习率,用来控制梯度下降时我们迈多大的步子,越大则梯度下降越快。需注意在进行计算梯度下降算法时,需要对每个参数同时进行求偏导,并同时更新。...
原创
发布博客 2022.04.21 ·
299 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

机器学习之线性回归

本文主要介绍监督学习的线性回归算法。前导知识:其中m表示数据集的个数,x表示输入值或者是事物的特征或属性,y表示输出值或者预期值。(x,y)表示一个训练样本。如果想要表示具体的训练样本需要加上上标。监督学习算法工作流程:将一些数据集交给学习算法,学习算法将给出一个函数(h),通过该函数可以通过输入值预测输出值。在线性回归中函数h为一元函数怎样判断函数h与实际数据的拟合度?这里引入了代价函数J,代价函数J是关于0与1的函数,即方差再除以1/2.函数J值的大小反映了假设函数h的拟合度,代价函
原创
发布博客 2022.04.18 ·
603 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

什么是监督学习?什么是无监督学习?

监督学习
原创
发布博客 2022.04.14 ·
1398 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

什么是机器学习?什么情况下使用机器学习?

什么是机器学习?答:Arthur Samuel :机器学习是在没有明确设置的情况下,使计算机具有学习能力的研究领域。Tom Mitchell:机器学习是计算机程序从经验E中学习,解决某一任务T,进行某一性能度量P,通过性能度量P来测定在任务T上的表现因经验E而提高。举例:如跳棋游戏,经验E为程序与自己下几万次跳棋,任务T就是玩跳棋,性能度量P是与新对手玩跳棋时赢得概率。考查举例:现有一程序以实现自动过滤垃圾邮件邮件的功能。试回答那个是E,T,P?1.将邮件分类为垃圾邮件或者不是垃圾邮
原创
发布博客 2022.04.09 ·
1425 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏