- 博客(5)
- 资源 (12)
- 收藏
- 关注
M.2_Specification_Rev1.1_TS_03072016.pdf
M.2接口定义,机械尺寸、信号定义、电气需求,与平台对接的尺寸、电气信息 PCB layout关键说明
2020-10-05
SDIO2.0标准 English
SDIO2.0标准协议 共73页 simplified specification SD card
Description Signaling Define Initialzation
2020-10-05
差分阻抗定义
Just when you thought you had mastered Zo, the characteristic impedance of a PCB trace, along comes a data sheet
that tells you to design for a specific differential impedance.
And to make things tougher, it says things like: “… since the
coupling of two traces can lower the effective impedance, use
50 Ohm design rules to achieve a differential impedance of
approximately 80 Ohms!” Is that confusing or what!!
This article shows you what differential impedance is.
But more than that, it discusses why it is, and shows you how
to make the correct calculations.
Single Trace:
Figure 1(a) illustrates a typical, individual trace. It has a
characteristic impedance, Zo, and carries a current, i. The
voltage along it, at any point, is (from Ohm’s law) V = Zo*i.
General case, trace pair:
Figure 1(b) illustrates a pair of traces. Trace 1 has a
characteristic impedance Z11, which corresponds to Zo,
above, and current i1. Trace 2 is similarly defined. As we
bring Trace 2 closer to Trace 1, current from Trace 2 begins
to couple into Trace 1 with a proportionality constant, k.
Similarly, Trace 1’s current, i1, begins to couple into Trace 2
with the same proportionality constant. The voltage on each
trace, at any point, again from Ohm’s law, is:
V1 = Z11 * i1 + Z11 * k * i2 Eqs. 1
V2 = Z22 * i2 + Z22 * k * i1
Now let’s define Z12 = k*Z11 and Z21 = k*Z22. Then,
Eqs. 1 can be written as:
V1 = Z11 * i1 + Z12 * i2 Eqs. 2
V2 = Z21 * i1 + Z22 * i2
This is the familiar pair of simultaneous equations we
often see in texts. The equations can be generalized into an
arbitrary number of traces, and they can be expressed in a
matrix form that is familiar to many of you.
Special case, differential pair:
Figure 1(c) illustrates a differential pair of traces. Repeating Equations 1:
V1 = Z11 * i1 + Z11 * k * i2 Eqs. 1
V2 = Z22 * i2 + Z22 * k * i1
Now, note that in a carefully designed and balanced situation,
Z11 = Z22 = Zo, and
i2 = -i1
This leads (with a little manipulation) to:
V1 = Zo * i1 * (1-k)
2017-09-19
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人