【C++/Java】详解一维差分算法和二维差分算法(详解前缀和逆运算)

目录

1.引入

        1.1 什么叫差分?

        1.2前缀和的逆运算

2.一维差分算法

3.二维差分算法


此算法建议联系前缀和算法来进行学习,涉及到前缀和的逆运算。

前缀和算法学习:【C++/Java】详解一维、二维前缀和算法

1.引入

        1.1 什么叫差分?

        差分算法是前缀和运算的逆过程。它通过计算原序列中相邻元素的差值,得到一个差分序列。差分序列的第一个元素与原序列的第一个元素相同,后续元素则是原序列中对应位置的元素与前一个元素的差值。通过对差分序列进行逐个累加,可以得到原序列的前缀和序列。

        1.2前缀和的逆运算

              设有一个a[i]原序列数组,我们如果通过输入的前缀和序列来还原原序列?

               这里需要先思考一个问题:

                          我们如何通过修改原序列的值来达到在前缀和序列的一个区间[l,r]进行增加一个数目c的效果

                           

                                  则可知公式:

                                                a[i]+=c;

                                                a[r+1]-=c;

        那么我们应该如何让前缀和序列变成原序列呢,我们只需要假设原序列b[i]为0,S[i]也为0,然后输入的值就是插入到前缀和序列中的值,这时候我们只需要通过上面的公式改变原序列的值,

那么,我们是不是就还原出来原序列了呢?

                

2.一维差分算法

      差分序列的构建是为了在原序列中进行一系列的修改操作,而不需要对整个序列进行逐个修改。通过修改差分序列中的某些元素,可以在后续进行前缀和运算时,将修改操作应用到原序列的相应位置上。

        根据上面我们所推出的公式很容易就能得出:

        C++描述:

//第一行包含两个整数 n 和 m。

//第二行包含 n个整数,表示整数序列。

//接下来 m行,每行包含三个整数 l,r,c,表示一个操作。

//在输入的序列中的一个区间[l,r]加上一个值c

#include<iostream>
using namespace std;

const int N=1e5+10;

int a[N],b[N];

void insert(int l,int r,int c){
    b[l]+=c;
    b[r+1]-=c;
}


int main(){
    int n,m,data;
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++){
        scanf("%d",&data);
        insert(i,i,data);//把输入的序列转化为原序列
    }
    int l,r,c;
    while(m--){
        scanf("%d%d%d",&l,&r,&c);
        insert(l,r,c);
    }
    //然后求前缀和输出,注意:因为输入的也是前缀和,输出也是前缀和,我们对原数列操作完后已经影响了输入进来的值了
    for(int i=1;i<=n;i++)b[i]+=b[i-1];
    for(int i=1;i<=n;i++)cout << b[i] << ' ';
    
}

 Java描述

import java.util.Arrays;
import java.util.Scanner;

public class DiffOne {
    public final static int N=1010;

    public final static int[] b=new int[N];

    public static void insert(int l,int r,int c){
        b[l]+=c;
        b[r+1]-=c;
    }

    public static void main(String[] args) {
        int n,m;
        Scanner scanner=new Scanner(System.in);
        n=scanner.nextInt();
        m=scanner.nextInt();
        for(int i=1;i<=n;i++){
            insert(i,i,scanner.nextInt());
        }
        int l,r,c;
        while(m>0){
            l= scanner.nextInt();
            r= scanner.nextInt();
            c= scanner.nextInt();
            insert(l,r,c);
            m--;
        }
        for(int i=1;i<=n;i++){
            b[i]+=b[i-1];
            System.out.print(b[i]+" ");
        }
    }
}

3.二维差分算法

建议这块先看下二维前缀和的知识,已经在页头给出入口了

        二维差分算法和一维差分算法一样的思路,这里我们只用知道如何通过前缀和序列矩阵求出原序列矩阵?

        这里我们引出如何通过修改原序列而做到修改前缀矩阵中的值:

        

根据上图的思路,我们知道了如何修改原矩阵的情况下修改前缀和矩阵中

所以我们也可以设初始a[i][j]=0,s[i][j]=0;在一个区域[l,r]插入值的时候呢,通过操作b[i]来做出原数组,这是很棒的想法。

        C++:

#include <iostream>
using namespace std;

const int N=1e4+10;

int b[N][N];

void insert(int x1,int y1,int x2,int y2,int c){
    b[x1][y1]+=c;
    b[x2+1][y1]-=c;
    b[x1][y2+1]-=c;
    b[x2+1][y2+1]+=c;
}

int main(){
    int n,m,q,data;
    scanf("%d%d%d",&n,&m,&q);
    for(int i=1;i<=n;i++){
        for(int j=1;j<=m;j++){
            scanf("%d",&data);
            insert(i,j,i,j,data);
        }
    }
    int x1,y1,x2,y2,c;
    while(q--){
        scanf("%d%d%d%d%d",&x1,&y1,&x2,&y2,&c);
        insert(x1,y1,x2,y2,c);
    }
    for(int i=1;i<=n;i++){
        for(int j=1;j<=m;j++){
        b[i][j]+=b[i-1][j]+b[i][j-1]-b[i-1][j-1];
        cout << b[i][j] << " ";
        }
        cout << endl;
    }
    return 0;
    
}

Java描述

import java.util.Scanner;

public class DiffTwo {

    public final static int N=1010;

    public final static int[][] b=new int[N][N];

    public static void insert(int x1,int y1,int x2,int y2,int c){
        b[x1][y1]+=c;
        b[x2+1][y1]-=c;
        b[x1][y2+1]-=c;
        b[x2+1][y2+1]+=c;
    }


    public static void main(String[] args) {
        int n,m,q;
        Scanner scanner=new Scanner(System.in);
        n=scanner.nextInt();
        m=scanner.nextInt();
        q=scanner.nextInt();
        for(int i=1;i<=n;i++)
            for(int j=1;j<=m;j++)
                insert(i,j,i,j,scanner.nextInt());

        int x1,y1,x2,y2,c;
        while (q>0){
            x1=scanner.nextInt();
            y1=scanner.nextInt();
            x2=scanner.nextInt();
            y2=scanner.nextInt();
            c=scanner.nextInt();
            insert(x1,y1,x2,y2,c);
            q--;
        }
        for(int i=1;i<=n;i++) {
            for (int j = 1; j <= m; j++) {
                b[i][j]+=b[i-1][j]+b[i][j-1]-b[i-1][j-1];
                System.out.print(b[i][j]+" ");
            }
            System.out.println();
        }

    }
}

### 前缀和差分算法的应用场景及实现 #### 一维前缀和一维情况下,前缀和用于快速计算区间内的元素总。通过预先处理数据,在后续查询时可以显著减少时间复杂度。 对于长度为n的数组`arr[]`,构建其对应的前缀和数组`prefixSum[]`的过程如下: ```python def build_prefix_sum(arr): n = len(arr) prefixSum = [0] * (n + 1) for i in range(1, n + 1): prefixSum[i] = prefixSum[i - 1] + arr[i - 1] return prefixSum ``` 当需要求解任意区间的时,只需做一次减法运算即可得到结果[^1]。 #### 二维前缀和 扩展到二维空间中,即针对矩阵形式的数据结构,同样可以通过预处理来加速区域求的操作效率。具体做法是在原有基础上增加维度方向上的累积过程。 假设有一个m*n大小的矩阵matrix[][],则可按照下述方式建立相应的二维前缀和表preSum[][]: ```python def build_2d_prefix_sum(matrix): m = len(matrix) n = len(matrix[0]) preSum = [[0]*(n+1) for _ in range(m+1)] for i in range(1,m+1): for j in range(1,n+1): preSum[i][j]=preSum[i-1][j]+preSum[i][j-1]-preSum[i-1][j-1]+matrix[i-1][j-1] return preSum ``` 利用上述表格能够高效地完成矩形区域内数值累加的任务。 #### 一维差分 差分主要用于解决频繁更新某一段连续位置上所有数加上/减去相同值的问题。它允许我们只记录变化量而非实际修改后的序列本身,从而节省大量不必要的重复劳动。 设原序列为a[], 对应的一维差分数组diff[]定义如下: \[ diff[i] = \begin{cases} a_i & ,i=0 \\ a_i-a_{i-1} &,otherwise\\ \end{cases}\] 基于此概念,如果要使闭区间[l,r]内所有的元素都增加v,则只需要调整两个端点处的差异值:\(diff[l]+=v\) \(diff[r+1]-=v\) 即可[^2]。 #### 二维差分 同样的原理也可以应用于更高维度的空间里。比如在一个M*N规格的地图上执行多次范围性的增益效果施放(如游戏中的技能释放),就可以借助于二维差分技术简化操作流程并提高性能表现。 考虑一个mxn尺寸的网格grid[][]以及相应构造出来的二维差分表delta[][]: ```python def apply_diff_to_grid(delta, grid): m = len(grid) n = len(grid[0]) for i in range(1, m): delta[i][0] += delta[i-1][0] for j in range(1, n): delta[0][j] += delta[0][j-1] for i in range(1, m): for j in range(1, n): delta[i][j] += delta[i-1][j] + delta[i][j-1] - delta[i-1][j-1] for i in range(m): for j in range(n): grid[i][j] += delta[i][j] ``` 这种方法特别适合用来处理涉及大面积影响因子变动的情况,因为每次变更仅需改动四个角落的位置参数就足以覆盖整个受影响区域。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

努力奋斗的张同学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值