目录
此算法建议联系前缀和算法来进行学习,涉及到前缀和的逆运算。
前缀和算法学习:【C++/Java】详解一维、二维前缀和算法
1.引入
1.1 什么叫差分?
差分算法是前缀和运算的逆过程。它通过计算原序列中相邻元素的差值,得到一个差分序列。差分序列的第一个元素与原序列的第一个元素相同,后续元素则是原序列中对应位置的元素与前一个元素的差值。通过对差分序列进行逐个累加,可以得到原序列的前缀和序列。
1.2前缀和的逆运算
设有一个a[i]原序列数组,我们如果通过输入的前缀和序列来还原原序列?
这里需要先思考一个问题:
我们如何通过修改原序列的值来达到在前缀和序列的一个区间[l,r]进行增加一个数目c的效果。
则可知公式:
a[i]+=c;
a[r+1]-=c;
那么我们应该如何让前缀和序列变成原序列呢,我们只需要假设原序列b[i]为0,S[i]也为0,然后输入的值就是插入到前缀和序列中的值,这时候我们只需要通过上面的公式改变原序列的值,
那么,我们是不是就还原出来原序列了呢?
2.一维差分算法
差分序列的构建是为了在原序列中进行一系列的修改操作,而不需要对整个序列进行逐个修改。通过修改差分序列中的某些元素,可以在后续进行前缀和运算时,将修改操作应用到原序列的相应位置上。
根据上面我们所推出的公式很容易就能得出:
C++描述:
//第一行包含两个整数 n 和 m。
//第二行包含 n个整数,表示整数序列。
//接下来 m行,每行包含三个整数 l,r,c,表示一个操作。
//在输入的序列中的一个区间[l,r]加上一个值c
#include<iostream>
using namespace std;
const int N=1e5+10;
int a[N],b[N];
void insert(int l,int r,int c){
b[l]+=c;
b[r+1]-=c;
}
int main(){
int n,m,data;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++){
scanf("%d",&data);
insert(i,i,data);//把输入的序列转化为原序列
}
int l,r,c;
while(m--){
scanf("%d%d%d",&l,&r,&c);
insert(l,r,c);
}
//然后求前缀和输出,注意:因为输入的也是前缀和,输出也是前缀和,我们对原数列操作完后已经影响了输入进来的值了
for(int i=1;i<=n;i++)b[i]+=b[i-1];
for(int i=1;i<=n;i++)cout << b[i] << ' ';
}
Java描述
import java.util.Arrays;
import java.util.Scanner;
public class DiffOne {
public final static int N=1010;
public final static int[] b=new int[N];
public static void insert(int l,int r,int c){
b[l]+=c;
b[r+1]-=c;
}
public static void main(String[] args) {
int n,m;
Scanner scanner=new Scanner(System.in);
n=scanner.nextInt();
m=scanner.nextInt();
for(int i=1;i<=n;i++){
insert(i,i,scanner.nextInt());
}
int l,r,c;
while(m>0){
l= scanner.nextInt();
r= scanner.nextInt();
c= scanner.nextInt();
insert(l,r,c);
m--;
}
for(int i=1;i<=n;i++){
b[i]+=b[i-1];
System.out.print(b[i]+" ");
}
}
}
3.二维差分算法
建议这块先看下二维前缀和的知识,已经在页头给出入口了
二维差分算法和一维差分算法一样的思路,这里我们只用知道如何通过前缀和序列矩阵求出原序列矩阵?
这里我们引出如何通过修改原序列而做到修改前缀矩阵中的值:
根据上图的思路,我们知道了如何修改原矩阵的情况下修改前缀和矩阵中
所以我们也可以设初始a[i][j]=0,s[i][j]=0;在一个区域[l,r]插入值的时候呢,通过操作b[i]来做出原数组,这是很棒的想法。
C++:
#include <iostream>
using namespace std;
const int N=1e4+10;
int b[N][N];
void insert(int x1,int y1,int x2,int y2,int c){
b[x1][y1]+=c;
b[x2+1][y1]-=c;
b[x1][y2+1]-=c;
b[x2+1][y2+1]+=c;
}
int main(){
int n,m,q,data;
scanf("%d%d%d",&n,&m,&q);
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
scanf("%d",&data);
insert(i,j,i,j,data);
}
}
int x1,y1,x2,y2,c;
while(q--){
scanf("%d%d%d%d%d",&x1,&y1,&x2,&y2,&c);
insert(x1,y1,x2,y2,c);
}
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
b[i][j]+=b[i-1][j]+b[i][j-1]-b[i-1][j-1];
cout << b[i][j] << " ";
}
cout << endl;
}
return 0;
}
Java描述
import java.util.Scanner;
public class DiffTwo {
public final static int N=1010;
public final static int[][] b=new int[N][N];
public static void insert(int x1,int y1,int x2,int y2,int c){
b[x1][y1]+=c;
b[x2+1][y1]-=c;
b[x1][y2+1]-=c;
b[x2+1][y2+1]+=c;
}
public static void main(String[] args) {
int n,m,q;
Scanner scanner=new Scanner(System.in);
n=scanner.nextInt();
m=scanner.nextInt();
q=scanner.nextInt();
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
insert(i,j,i,j,scanner.nextInt());
int x1,y1,x2,y2,c;
while (q>0){
x1=scanner.nextInt();
y1=scanner.nextInt();
x2=scanner.nextInt();
y2=scanner.nextInt();
c=scanner.nextInt();
insert(x1,y1,x2,y2,c);
q--;
}
for(int i=1;i<=n;i++) {
for (int j = 1; j <= m; j++) {
b[i][j]+=b[i-1][j]+b[i][j-1]-b[i-1][j-1];
System.out.print(b[i][j]+" ");
}
System.out.println();
}
}
}