【C++/Java】详解一维差分算法和二维差分算法(详解前缀和逆运算)

目录

1.引入

        1.1 什么叫差分?

        1.2前缀和的逆运算

2.一维差分算法

3.二维差分算法


此算法建议联系前缀和算法来进行学习,涉及到前缀和的逆运算。

前缀和算法学习:【C++/Java】详解一维、二维前缀和算法

1.引入

        1.1 什么叫差分?

        差分算法是前缀和运算的逆过程。它通过计算原序列中相邻元素的差值,得到一个差分序列。差分序列的第一个元素与原序列的第一个元素相同,后续元素则是原序列中对应位置的元素与前一个元素的差值。通过对差分序列进行逐个累加,可以得到原序列的前缀和序列。

        1.2前缀和的逆运算

              设有一个a[i]原序列数组,我们如果通过输入的前缀和序列来还原原序列?

               这里需要先思考一个问题:

                          我们如何通过修改原序列的值来达到在前缀和序列的一个区间[l,r]进行增加一个数目c的效果

                           

                                  则可知公式:

                                                a[i]+=c;

                                                a[r+1]-=c;

        那么我们应该如何让前缀和序列变成原序列呢,我们只需要假设原序列b[i]为0,S[i]也为0,然后输入的值就是插入到前缀和序列中的值,这时候我们只需要通过上面的公式改变原序列的值,

那么,我们是不是就还原出来原序列了呢?

                

2.一维差分算法

      差分序列的构建是为了在原序列中进行一系列的修改操作,而不需要对整个序列进行逐个修改。通过修改差分序列中的某些元素,可以在后续进行前缀和运算时,将修改操作应用到原序列的相应位置上。

        根据上面我们所推出的公式很容易就能得出:

        C++描述:

//第一行包含两个整数 n 和 m。

//第二行包含 n个整数,表示整数序列。

//接下来 m行,每行包含三个整数 l,r,c,表示一个操作。

//在输入的序列中的一个区间[l,r]加上一个值c

#include<iostream>
using namespace std;

const int N=1e5+10;

int a[N],b[N];

void insert(int l,int r,int c){
    b[l]+=c;
    b[r+1]-=c;
}


int main(){
    int n,m,data;
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++){
        scanf("%d",&data);
        insert(i,i,data);//把输入的序列转化为原序列
    }
    int l,r,c;
    while(m--){
        scanf("%d%d%d",&l,&r,&c);
        insert(l,r,c);
    }
    //然后求前缀和输出,注意:因为输入的也是前缀和,输出也是前缀和,我们对原数列操作完后已经影响了输入进来的值了
    for(int i=1;i<=n;i++)b[i]+=b[i-1];
    for(int i=1;i<=n;i++)cout << b[i] << ' ';
    
}

 Java描述

import java.util.Arrays;
import java.util.Scanner;

public class DiffOne {
    public final static int N=1010;

    public final static int[] b=new int[N];

    public static void insert(int l,int r,int c){
        b[l]+=c;
        b[r+1]-=c;
    }

    public static void main(String[] args) {
        int n,m;
        Scanner scanner=new Scanner(System.in);
        n=scanner.nextInt();
        m=scanner.nextInt();
        for(int i=1;i<=n;i++){
            insert(i,i,scanner.nextInt());
        }
        int l,r,c;
        while(m>0){
            l= scanner.nextInt();
            r= scanner.nextInt();
            c= scanner.nextInt();
            insert(l,r,c);
            m--;
        }
        for(int i=1;i<=n;i++){
            b[i]+=b[i-1];
            System.out.print(b[i]+" ");
        }
    }
}

3.二维差分算法

建议这块先看下二维前缀和的知识,已经在页头给出入口了

        二维差分算法和一维差分算法一样的思路,这里我们只用知道如何通过前缀和序列矩阵求出原序列矩阵?

        这里我们引出如何通过修改原序列而做到修改前缀矩阵中的值:

        

根据上图的思路,我们知道了如何修改原矩阵的情况下修改前缀和矩阵中

所以我们也可以设初始a[i][j]=0,s[i][j]=0;在一个区域[l,r]插入值的时候呢,通过操作b[i]来做出原数组,这是很棒的想法。

        C++:

#include <iostream>
using namespace std;

const int N=1e4+10;

int b[N][N];

void insert(int x1,int y1,int x2,int y2,int c){
    b[x1][y1]+=c;
    b[x2+1][y1]-=c;
    b[x1][y2+1]-=c;
    b[x2+1][y2+1]+=c;
}

int main(){
    int n,m,q,data;
    scanf("%d%d%d",&n,&m,&q);
    for(int i=1;i<=n;i++){
        for(int j=1;j<=m;j++){
            scanf("%d",&data);
            insert(i,j,i,j,data);
        }
    }
    int x1,y1,x2,y2,c;
    while(q--){
        scanf("%d%d%d%d%d",&x1,&y1,&x2,&y2,&c);
        insert(x1,y1,x2,y2,c);
    }
    for(int i=1;i<=n;i++){
        for(int j=1;j<=m;j++){
        b[i][j]+=b[i-1][j]+b[i][j-1]-b[i-1][j-1];
        cout << b[i][j] << " ";
        }
        cout << endl;
    }
    return 0;
    
}

Java描述

import java.util.Scanner;

public class DiffTwo {

    public final static int N=1010;

    public final static int[][] b=new int[N][N];

    public static void insert(int x1,int y1,int x2,int y2,int c){
        b[x1][y1]+=c;
        b[x2+1][y1]-=c;
        b[x1][y2+1]-=c;
        b[x2+1][y2+1]+=c;
    }


    public static void main(String[] args) {
        int n,m,q;
        Scanner scanner=new Scanner(System.in);
        n=scanner.nextInt();
        m=scanner.nextInt();
        q=scanner.nextInt();
        for(int i=1;i<=n;i++)
            for(int j=1;j<=m;j++)
                insert(i,j,i,j,scanner.nextInt());

        int x1,y1,x2,y2,c;
        while (q>0){
            x1=scanner.nextInt();
            y1=scanner.nextInt();
            x2=scanner.nextInt();
            y2=scanner.nextInt();
            c=scanner.nextInt();
            insert(x1,y1,x2,y2,c);
            q--;
        }
        for(int i=1;i<=n;i++) {
            for (int j = 1; j <= m; j++) {
                b[i][j]+=b[i-1][j]+b[i][j-1]-b[i-1][j-1];
                System.out.print(b[i][j]+" ");
            }
            System.out.println();
        }

    }
}

一维对流方程是一种描述流体或气体运动的方程,可以使用差分方法在计算机上进行数值求解。下面是使用C++进行一维对流方程差分解的示例代码: ```cpp #include <iostream> #include <vector> // 定义模拟区域的长度和时间步长 const double L = 1.0; // 区域长度 const double T = 1.0; // 模拟总时间 const double dt = 0.01; // 时间步长 // 定义模拟参数 const double u = 1.0; // 对流速度 const double c = u * dt; // Courant数 // 定义模拟区域的网格数量 const int N = 100; // 区域网格数 int main() { // 初始化模拟区域 std::vector<double> u(N, 0.0); // 模拟区域内的物理量(如速度)值 std::vector<double> u_new(N, 0.0); // 存储新的物理量值 // 进行时间步迭代 for (double t = 0.0; t <= T; t += dt) { // 计算新的物理量值 for (int i = 1; i < N - 1; ++i) { u_new[i] = u[i] - c * (u[i] - u[i - 1]); // 使用一阶向前差分格式 } // 更新物理量值 for (int i = 1; i < N - 1; ++i) { u[i] = u_new[i]; } } // 输出模拟结果 for (int i = 0; i < N; ++i) { std::cout << u[i] << " "; } std::cout << std::endl; return 0; } ``` 在这段代码中,我们使用了一阶向前差分格式来进行对流方程的数值求解。通过迭代时间步,我们计算了新的物理量值并更新了模拟区域内的物理量。最后,我们输出了模拟结果。请注意,这只是一个简单的示例,实际应用中可能需要根据具体问题进行适当的修改和扩展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

努力奋斗的张同学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值