73. Set Matrix Zeroes

题目:

Given a m x n matrix, if an element is 0, set its entire row and column to 0. Do it in place.

click to show follow up.

Follow up:

Did you use extra space?
A straight forward solution using O(mn) space is probably a bad idea.
A simple improvement O(m + n) space, but still not the best solution.
Could you devise a constant space solution?

题意:

给定一个m*n大小的矩阵,如果矩阵中有一个元素为0, 则将该元素所对应的行、列所有元素全部置0。

1、最直接的方法是使用额外O(mn)大小的空间来完成;

2、一个简单一点儿的改善方法是使用额外O(m + n)的空间来完成;

3、最优的方法是使用常数大小的空间来完成。

思路一:

使用额外O(mn)大小的空间来完成。

思路二:

使用额外O(m + n)的空间,设置两个bool数组,记录每行和每列是否存在0;

代码:

class Solution {
public:
    void setZeroes(vector<vector<int>>& matrix) {
        
        int m = matrix.size();
        int n = matrix[0].size();
        
        vector<bool> row(m, false);
        vector<bool> col(n, false);
        
        for(int i=0; i<m; i++){
            for(int j=0; j<n; j++){
                if(matrix[i][j]==0){
                    row[i] = true;
                    col[j] = true;
                }
            }
        }
        
        for(int i=0; i<m; i++){
            if(row[i]){
                for(int j=0; j<n; j++){
                    matrix[i][j] = 0;
                }
            }
        }
        
        for(int i=0; i<n; i++){
            if(col[i]){
                for(int j=0; j<m; j++){
                    matrix[j][i] = 0;
                }
            }
        }
    }
};

思路三:

使用常数空间,直接复用矩阵数组的第一行与第一列来记录每行每列是否存在0;

代码:

class Solution {
public:
    void setZeroes(vector<vector<int>>& matrix) {
        
        int m = matrix.size();
        int n = matrix[0].size();
        
        bool row_has_zero = false;
        bool col_has_zero = false;
        
        for(int i=0; i<m; i++){
            if(matrix[i][0]==0){
                col_has_zero = true;
                break;
            }
        }
        
        for(int i=0; i<n; i++){
            if(matrix[0][i]==0){
                row_has_zero = true;
                break;
            }
        }
        
        for(int i=1; i<m; i++){
            for(int j=1; j<n; j++){
                if(matrix[i][j]==0){
                    matrix[i][0] = 0;
                    matrix[0][j] = 0;
                }
            }
        }
        
        for(int i=1; i<m; i++){
            if(matrix[i][0]==0){
                for(int j=1; j<n; j++){
                    matrix[i][j] = 0;
                }
            }
        }
        
        for(int i=1; i<n; i++){
            if(matrix[0][i]==0){
                for(int j=1; j<m; j++){
                    matrix[j][i] = 0;
                }
            }
        }
        
        if(col_has_zero){
            for(int i=0; i<m; i++){
                matrix[i][0] = 0;
            }
        }
        
        if(row_has_zero){
            for(int i=0; i<n; i++){
                matrix[0][i] = 0;
            }
        }
    }
};


 


import numpy as np import pandas as pd import matplotlib.pyplot as plt plt.rcParams['font.sans-serif'] = ["SimHei"] # 单使用会使负号显示错误 plt.rcParams['axes.unicode_minus'] = False # 把负号正常显示 # 读取北京房价数据 path = 'data.txt' data = pd.read_csv(path, header=None, names=['房子面积', '房子价格']) print(data.head(10)) print(data.describe()) # 绘制散点图 data.plot(kind='scatter', x='房子面积', y='房子价格') plt.show() def computeCost(X, y, theta): inner = np.power(((X * theta.T) - y), 2) return np.sum(inner) / (2 * len(X)) data.insert(0, 'Ones', 1) cols = data.shape[1] X = data.iloc[:,0:cols-1]#X是所有行,去掉最后一列 y = data.iloc[:,cols-1:cols]#X是所有行,最后一列 print(X.head()) print(y.head()) X = np.matrix(X.values) y = np.matrix(y.values) theta = np.matrix(np.array([0,0])) print(theta) print(X.shape, theta.shape, y.shape) def gradientDescent(X, y, theta, alpha, iters): temp = np.matrix(np.zeros(theta.shape)) parameters = int(theta.ravel().shape[1]) cost = np.zeros(iters) for i in range(iters): error = (X * theta.T) - y for j in range(parameters): term = np.multiply(error, X[:, j]) temp[0, j] = theta[0, j] - ((alpha / len(X)) * np.sum(term)) theta = temp cost[i] = computeCost(X, y, theta) return theta, cost alpha = 0.01 iters = 1000 g, cost = gradientDescent(X, y, theta, alpha, iters) print(g) print(computeCost(X, y, g)) x = np.linspace(data.Population.min(), data.Population.max(), 100) f = g[0, 0] + (g[0, 1] * x) fig, ax = plt.subplots(figsize=(12,8)) ax.plot(x, f, 'r', label='Prediction') ax.scatter(data.Population, data.Profit, label='Traning Data') ax.legend(loc=2) ax.set_xlabel('房子面积') ax.set_ylabel('房子价格') ax.set_title('北京房价拟合曲线图') plt.show()
最新发布
06-04
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值