题目:
Given a m x n matrix, if an element is 0, set its entire row and column to 0. Do it in place.
Follow up:
Did you use extra space?
A straight forward solution using O(mn) space is probably a bad idea.
A simple improvement O(m + n) space, but still not the best solution.
Could you devise a constant space solution?
题意:
给定一个m*n大小的矩阵,如果矩阵中有一个元素为0, 则将该元素所对应的行、列所有元素全部置0。
1、最直接的方法是使用额外O(mn)大小的空间来完成;
2、一个简单一点儿的改善方法是使用额外O(m + n)的空间来完成;
3、最优的方法是使用常数大小的空间来完成。
思路一:
使用额外O(mn)大小的空间来完成。
思路二:
使用额外O(m + n)的空间,设置两个bool数组,记录每行和每列是否存在0;
代码:
class Solution { public: void setZeroes(vector<vector<int>>& matrix) { int m = matrix.size(); int n = matrix[0].size(); vector<bool> row(m, false); vector<bool> col(n, false); for(int i=0; i<m; i++){ for(int j=0; j<n; j++){ if(matrix[i][j]==0){ row[i] = true; col[j] = true; } } } for(int i=0; i<m; i++){ if(row[i]){ for(int j=0; j<n; j++){ matrix[i][j] = 0; } } } for(int i=0; i<n; i++){ if(col[i]){ for(int j=0; j<m; j++){ matrix[j][i] = 0; } } } } };
思路三:
使用常数空间,直接复用矩阵数组的第一行与第一列来记录每行每列是否存在0;
代码:
class Solution { public: void setZeroes(vector<vector<int>>& matrix) { int m = matrix.size(); int n = matrix[0].size(); bool row_has_zero = false; bool col_has_zero = false; for(int i=0; i<m; i++){ if(matrix[i][0]==0){ col_has_zero = true; break; } } for(int i=0; i<n; i++){ if(matrix[0][i]==0){ row_has_zero = true; break; } } for(int i=1; i<m; i++){ for(int j=1; j<n; j++){ if(matrix[i][j]==0){ matrix[i][0] = 0; matrix[0][j] = 0; } } } for(int i=1; i<m; i++){ if(matrix[i][0]==0){ for(int j=1; j<n; j++){ matrix[i][j] = 0; } } } for(int i=1; i<n; i++){ if(matrix[0][i]==0){ for(int j=1; j<m; j++){ matrix[j][i] = 0; } } } if(col_has_zero){ for(int i=0; i<m; i++){ matrix[i][0] = 0; } } if(row_has_zero){ for(int i=0; i<n; i++){ matrix[0][i] = 0; } } } };