分治法/二分法:34. 在排序数组中查找元素的第一个和最后一个位置

给定一个按照升序排列的整数数组 nums,和一个目标值 target。找出给定目标值在数组中的开始位置和结束位置。

你的算法时间复杂度必须是 O(log n) 级别。

如果数组中不存在目标值,返回 [-1, -1]。

示例 1:

输入: nums = [5,7,7,8,8,10], target = 8
输出: [3,4]
示例 2:

输入: nums = [5,7,7,8,8,10], target = 6
输出: [-1,-1]

在二分查找法中使用 if(target >= nums[i]) left = mid + 1;可以找到第一个大于target的元素的位置。

使用该方法查找 target 的右边界,复用该函数查找 (target-1)的右边界即是 target 的左边界,右边界所指元素是第一个大于target元素,左边界所指元素是第一个大于 (target-1)的元素,

如果target存在的话,则因为左边界指向target的首次出现的值,右边界指向的是第一个大于 target 的元素的位置,所以target的位置范围为 [leftBorder, rightBorder - 1];

如果 target 不存在的话,右边界指向的是第一个大于target 的元素的位置,左边界指向的是第一个大于 (target -1) 的元素,本来应该指向target的,当时因为target 不存在,所以也指向了第一个大于target 的元素,所以此时 左右边界相等,leftBorder == rightBorder。

 

class Solution {

    // 获取在nums数组第一个大于等于 target 的元素下标
    public int getRightBorder(int[] nums, int target){
        int left = 0, right = nums.length - 1;
        int mid = 0;
        while(left <= right){
            mid = (left + right) / 2;
            if(target >= nums[mid]){
                left = mid  + 1;
            }else{
                right = mid - 1;
            }
        }
        return left;
    }

    public int[] searchRange(int[] nums, int target) {
        if(nums == null || nums.length == 0){
            return new int[]{-1, -1};
        }

        int leftBorder = getRightBorder(nums, target - 1);  
        int rightBorder = getRightBorder(nums, target);
        if(leftBorder == rightBorder){        // 左右下标相等则说明该数不存在
            return new int[]{-1, -1};
        }
        return new int[]{leftBorder , rightBorder - 1};
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值