fastText 训练和使用

2019-09-09 16:33:11

问题描述:fastText是如何进行文本分类的。

问题求解

fastText是一种Facebook AI Research在16年开源的一个文本分类器。 其特点就是fast。相对于其它文本分类模型,如SVM,Logistic Regression和neural network等模型,fastText在保持分类效果的同时,大大缩短了训练时间。
fastText专注于文本分类,在许多标准问题上的分类效果非常好。

  • 训练fastText
    trainDataFile = 'train.txt'

    classifier = fasttext.train_supervised(
        input = trainDataFile,
        label_prefix = '__label__',
        dim = 256,
        epoch = 50,
        lr = 1,
        lr_update_rate = 50,
        min_count = 3,
        loss = 'softmax',
        word_ngrams = 2,
        bucket = 1000000)
    classifier.save_model("Model.bin")

在训练fastText的时候有两点需要特别注意,一个是word_ngrams,一个是loss,这两个是fastText的精髓所在,之后会提到。

在使用fastText进行文本训练的时候需要提前分词,这里的ngrams是根据分词的结果来组织架构的;

事实上在训练文本分类的时候有个副产物就是word2vec,fastText在实现文本分类的时候其实和cbow非常类似,就是把word2vec求和之后过了一个fc进行的分类。

  • 使用fastText进行预测

使用fastText进行预测是非常简单的,可以直接使用下述的代码进行预测。

    testDataFile = 'test.txt'

    classifier = fasttext.load_model('Model.bin')  

    result = classifier.test(testDataFile)
    print '测试集上数据量', result[0]
    print '测试集上准确率', result[1]
    print '测试集上召回率', result[2]
  • Bag of tricks for efficient text classification

1)分层softmax:对于类别过多的类目,fastText并不是使用的原生的softmax过交叉熵,而是使用的分层softmax,这样会大大提高模型的训练和预测的速度。

2)n-grams:fastText使用了字符级别的n-grams来表示一个单词。对于单词“apple”,假设n的取值为3,则它的trigram有

“<ap”, “app”, “ppl”, “ple”, “le>”

其中,<表示前缀,>表示后缀。于是,我们可以用这些trigram来表示“apple”这个单词,进一步,我们可以用这5个trigram的向量叠加来表示“apple”的词向量。

这带来两点好处:

1. 对于低频词生成的词向量效果会更好。因为它们的n-gram可以和其它词共享。

2. 对于训练词库之外的单词,仍然可以构建它们的词向量。我们可以叠加它们的字符级n-gram向量。

 

转载于:https://www.cnblogs.com/hyserendipity/p/11492534.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值