悟乙己
码龄7年
  • 7,258,681
    被访问
  • 363
    原创
  • 214
    排名
  • 9,100
    粉丝
关注
提问 私信

个人简介:心如花木,皆向阳而生!

  • 加入CSDN时间: 2015-03-27
博客简介:

素质云笔记

博客描述:
营销数据科学,之后文章会发在知乎:https://www.zhihu.com/people/mattzheng7
查看详细资料
  • 8
    领奖
    总分 6,381 当月 251
个人成就
  • 人工智能领域优质创作者
  • 博客专家认证
  • 获得3,322次点赞
  • 内容获得1,335次评论
  • 获得15,475次收藏
创作历程
  • 15篇
    2022年
  • 75篇
    2021年
  • 25篇
    2020年
  • 15篇
    2019年
  • 40篇
    2018年
  • 117篇
    2017年
  • 139篇
    2016年
  • 3篇
    2015年
成就勋章
TA的专栏
  • 付费-智能写作专栏
    付费
    28篇
  • Python︱基础与数据处理
    28篇
  • 营销科学
    45篇
  • 航拍AI
    2篇
  • streamlit
    7篇
  • NLP︱R+python
    61篇
  • NLP︱相关技术跟踪
    23篇
  • 机器学习︱R+python
    79篇
  • 个性化推荐
    18篇
  • Tensorflow+Keras
    19篇
  • 知识图谱(KG/Neo4j)
    16篇
  • R︱数据操作与清洗
    36篇
  • R的数据操作与清洗
    26篇
  • R语言与自然语言处理
    21篇
  • R︱精准营销
    25篇
  • NVIDIA-RAPID
    4篇
  • 机器学习平台Apple.Turicreate
    7篇
  • 图像︱相关技术跟踪与商业变现
    23篇
  • 图像opencv及图像基础技术
    9篇
  • 图像︱caffe
    19篇
  • 个性化推荐与检索
    8篇
  • 多模态︱相关技术跟踪
    1篇
  • 大数据、并行计算&R
    15篇
  • R︱金融风险管控
    10篇
  • R︱可视化
    10篇
  • SPSS Modeler&SPSS
    1篇
  • Eviews 8.0&9.0
    3篇
  • SAS
    5篇
  • docker/linux/API部署
    7篇
  • python︱爬虫
    2篇
  • 八爪鱼采集器
    1篇
  • 图像︱质量评估与检索
    1篇
兴趣领域 设置
  • 大数据
    flink
  • 人工智能
    opencv语音识别计算机视觉机器学习深度学习神经网络自然语言处理tensorflowpytorch图像处理nlp数据分析
作者简介
  • 之后文章会发在知乎:https://www.zhihu.com/people/mattzheng7 70 ——微信公众号:素质云笔记
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

转载 | Python中多层List展平为一层

参考:Python中多层List展平为一层使用Python脚本的过程中,偶尔需要使用list多层转一层,又总是忘记怎么写搜索关键词,所以总是找了很久,现在把各种方法记录下来,方便自己也方便大家.方法很多,现在就简单写8种,后面再对这8种方法做基准测试.声明:文中的方法均收集自Making a flat list out of list of lists in Pythonimport functoolsimport itertoolsimport numpyimport operatori
转载
发布博客 2022.05.10 ·
35 阅读 ·
0 点赞 ·
0 评论

笔记︱目标人群优选的Look-aLike Modeling案例集锦

如果把广告主圈出来的那 10w 用户称为种子用户(「seed users」),那么我们可以把需要额外提供的一批相似的用户称之为 「look-alike users」。我们把这种基于种子用户进行相似人群扩展的过程称之为 「look-alike modeling」。所以,look-alike 并不是某种特定的算法,而是一类建模方法的统称。笔者自己总结比较常规的技术路线是四条:TGI的标签扩散方案,基本可以不用算法,通过数据统计就可以;而且可以往:相关品类/竞品/品牌/搜索/流失人群等扩散优势:逻辑简单
原创
发布博客 2022.05.08 ·
1030 阅读 ·
0 点赞 ·
0 评论

智慧供应链的学习笔记(库存管理、配补货、仓间调拨、控制塔等)

文章目录1 供应链集成系统案例1.1 京东物流一体化供应链1.1.1 算法中台1.1.2 易卜工程化平台1.2 美团:到店供应链及商品平台建设实践2 市面上的供应链解决方案2.1 京慧系统——成熟的企业级客户服务系统2.2 菜鸟网络全套数智化供应链解决方案2.2.1 智能选品2.2.2 联合预测2.2.3 补货分仓2.2.4 一些案例介绍:2.3 得体科技——面向服装行业,打造一站式柔性供应链平台2.4 数势科技:Supply Force智慧供应链平台2.5 杉数科技2.6 顺如丰来2.7 华为云:供应链灵
原创
发布博客 2022.05.05 ·
1511 阅读 ·
0 点赞 ·
0 评论

笔记 | 数据分析产品未来范式的小结(增强分析、智能交互等)

笔者之前就看到过增强分析这个概念,只不过没有特意留意,最近也是在总结一些手边工作,通过观察了一些技术部门关于数据分析产品的设计思路,笔者觉得增强分析这个概念背后的趋势,确实是现在很多数据分析类产品的趋势。1 数据分析 -> 数据产品的意义2+4+8谷维:快手如何提升数据化管理效率?数据分析和数据产品是提升管理效率的两个重要的能力。接下来,从数据分析和数据产品两个角度介绍一下,如何提升数据化管理效率?1.1 数据分析:要从业务中来,到业务中去只有将业务目标进行拆解,数据量化才会更贴近业务,
原创
发布博客 2022.05.03 ·
2027 阅读 ·
0 点赞 ·
0 评论

活动、节假日、促销等营销方式的因果效应评估——方法模型篇(二)

笔者近两年都在做智能营销方面的探索,不过最近想稍微切换自己的研究赛道,所以最近想把智能营销方面细枝末节的一些思考发出来。关于活动、节假日、促销等营销方式的因果效应评估前篇是《活动、节假日、促销等营销方式的因果效应评估——特征工程篇(一)》是把给入模型时特征加工的方式列举一下,本篇是想简单总结如何评价一个活动营销方式的好坏;当然方法本身不胜枚举,只能在有限视野里面进行归纳。1 回归的方法活动评价,与笔者之前思考的一个点也是有些共同的《数据科学之 如何找到指标的最 佳分裂点的几个想法》最佳分裂点其实就是
原创
发布博客 2022.05.01 ·
307 阅读 ·
1 点赞 ·
0 评论

活动、节假日、促销等营销方式的因果效应评估——特征工程篇(一)

本系列旨在挖掘活动、节假日、促销、优惠券、积分等营销权益因果效应评估,目前规划两个篇幅:第一篇:会收集活动、节假日、促销等营销权益在做一些建模项目中,可以构造成为的特征工程方式第二篇:使用各类模型、方法总结这些营销方式的几种效应评估方法更多是文献整理,主要集中在预测类模型 - 营销方式入模的特征工程文章目录1 活动类特征工程1.1 [竞赛] Corporación Favorita Grocery Sales Forecasting1.22 优惠券类2.1 天池新人实战赛o2o优惠券使用预测2
原创
发布博客 2022.04.28 ·
355 阅读 ·
0 点赞 ·
0 评论

Transformer、BERT等模型学习笔记

记录一下刷B站教学视频的一些笔记,目前主刷:李沐老师的【跟李沐学AI】公众号-【NLP从入门到放弃】 的视频文章目录1 Transformer从零详细解读(可能是你见过最通俗易懂的讲解)1.1 整体结构1.2 encoder部分1.2.1 输入部分1.2.2 多头注意力机制1.2.2.1 注意力机制原理1.2.2.2 QKV的获取方式1.2.3 残差1.2.3 layer norm 与BN的差异1.2.4 前馈神经网络1.3 Decoder1.3.1 masked1.3.2 新增的多头注意力机制
原创
发布博客 2022.03.20 ·
972 阅读 ·
1 点赞 ·
0 评论

航拍+AI︱paddlepaddle图像分割实现天空风格迁移(换天、漂浮城堡、宇宙飞船)

1 介绍环节昨天那篇写的是:航拍+AI︱极简的视频风格迁移体验是把航拍的风景图进行整体的风格迁移,不过从成片效果来看,太过于超现实。本篇是想考量局部的风格迁移,使用的是paddlepaddle开源的一款模型,PaddleHub 中的SkyAR,源教程为:SkyAR:一键完成视频魔法换天,不得不说,paddle开源了很多有意思的项目,值得玩一下。先来看看,SkyAR可以实现的效果原视频图:改编视频图:SkyAR 是一种用于视频中天空置换与协调的视觉方法,该方法能够在风格可控的视频中自动
原创
发布博客 2022.02.13 ·
1702 阅读 ·
1 点赞 ·
0 评论

航拍+AI︱极简的视频风格迁移体验

五年前,玩过很简单的风格迁移:迁移学习︱艺术风格转化:Artistic style-transfer+ubuntu14.0+caffe(only CPU)加上最近有点想买个无人机,所以先打个样,看看无人机+AI的一些合成效果。文章目录1 下载一个b站航拍视频2 风格迁移3 效果4 后续的想法1 下载一个b站航拍视频因为无人机还没到。。估计到了,也要很久才能拍得出像样的,所以只能盗视频来试玩了,使用的是开源项目:BBDown一款命令行式哔哩哔哩下载器. Bilibili Downloader
原创
发布博客 2022.02.12 ·
2176 阅读 ·
1 点赞 ·
0 评论

torch的使用笔记

1 安装篇参考:[开发技巧]·PyTorch如何使用GPU加速(CPU与GPU数据的相互转换)安装可以在官方参考代码,最好使用condahttps://pytorch.org/get-started/locally/conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch检测是否可以使用GPU,使用一个全局变量use_gpu,便于后面操作使用use_gpu = torch.cuda.is_availabl
原创
发布博客 2022.02.11 ·
76 阅读 ·
0 点赞 ·
0 评论

Kats时间序列开源库的使用笔记

1 Kats的千辛万苦安装之路不知道是不是笔者的window笔记本的问题,按照kats出现的很多问题安装Kats时候,会报错:error: Microsoft Visual C++ 14.0 or greater is required. Get it with "Microsoft C++ Build Tools": https://visualstudio.microsoft.com/visual-cpp-build-tools/一般是按照prophet的时候会出现:其实是可以 直接跳过
原创
发布博客 2022.01.25 ·
1142 阅读 ·
2 点赞 ·
0 评论

因果推断与反事实预测——几篇关联论文(二十六)

有几篇关联的论文,如果论文开源代码了,笔者比较喜欢读+code练习,所以看这类文献比较慢,先Mark再精读了…文章目录1 Auto IV: Counterfactual Prediction via Automatic Instrumental Variable Decomposition2 ICML & UBC|Deep IV: A Flexible Approach for Counterfactual Prediction3 Double Robust Representation Le.
原创
发布博客 2022.01.13 ·
1941 阅读 ·
0 点赞 ·
0 评论

因果推断——借微软EconML测试用DML和deepIV进行反事实预测实验(二十五)

文章目录1 导言1.1 KDD2021:盒马-融合反事实预测与MDP模型的清滞销定价算法1.2 本篇想法2 代码2.1 数据生成2.2 DML模型:有干预下的Y增量2.3 Tree-based模型2.4 deepIV训练与预测2.5 结果比较2.6 短期小结1 导言1.1 KDD2021:盒马-融合反事实预测与MDP模型的清滞销定价算法本篇想法来源:因果推断与反事实预测——盒马KDD2021的一篇论文(二十三)盒马论文提到了论文模型:半参数模型,上图是顺着使用数据的比例增加三个模型的RMAE,
原创
发布博客 2022.01.08 ·
1159 阅读 ·
2 点赞 ·
0 评论

因果推断与反事实预测——利用DML进行价格弹性计算(二十四)

文章目录1 导言1.1 价格需求弹性介绍1.2 由盒马反事实预测论文开始1.3 DML - 价格弹性预测推理步骤2 案例详解2.1 数据清理2.2 [v1版]求解价格弹性:OLS回归2.3 [v2版]求解价格弹性:Poisson回归+多元岭回归2.4 [v3版]求解价格弹性:DML2.4.1 DML数据准备 + 建模 + 求残差2.4.2 三块模型对比2.4.3 稳健性评估1 导言1.1 价格需求弹性介绍经济学课程里谈到价格需求弹性,描述需求数量随商品价格的变动而变化的弹性。价格一般不直接影响需求,
原创
发布博客 2022.01.04 ·
2383 阅读 ·
5 点赞 ·
7 评论

因果推断与反事实预测——盒马KDD2021的一篇论文(二十三)

参考:KDD2021论文推荐:盒马-融合反事实预测与MDP模型的清滞销定价算法Markdowns-in-E-Commerce-Fresh-Retail-A-Counterfactual-Prediction-and-Multi-Period-Optimization-Approach利用机器学习因果推理进行弹性定价数据分析36计(29):价格需求弹性和因果推断简单版:DML.ipynb数据集:Association Rules and Market Basket Analysis论文地址:h
原创
发布博客 2022.01.02 ·
2271 阅读 ·
3 点赞 ·
3 评论

看到的小伙伴可以在博客之星主页,评论+五星好评呀: https://bbs.csdn.net/topics/603956143

发布动态 2021.12.29

Google 因果推断的CausalImpact 贝叶斯结构时间序列模型(二十二)

之前一篇:跟着开源项目学因果推断——CausalImpact 贝叶斯结构时间序列模型(二十一)这里另外写一篇来继续研究一下CausalImpact这个开源库的一些细节的1 CausalImpact 一些可调参数1.1 CausalImpact默认的两种算法CausalImpact默认使用TensorFlow Probability来求的两种算法,分别是Variational Inference和Hamiltonian Monte CarloVI,变分推断,变分推断(Variational In
原创
发布博客 2021.12.29 ·
1508 阅读 ·
1 点赞 ·
1 评论

跟着开源项目学因果推断——CausalImpact 贝叶斯结构时间序列模型(二十一)

文章目录1 Causal Impact与贝叶斯结构时间序列模型1.1 观测数据下Causal Impact的背景由来1.2 贝叶斯结构时间序列模型1.3 谷歌的Causal Impact2 一些案例2.1 CausalImpact的时序选择2.2 日文案例:CausalImpactの理解と実装2.3 [翻译]R语言案例:An R package for causal inference using Bayesian structural time-series models3 官方:TensorFlow C
原创
发布博客 2021.12.23 ·
1479 阅读 ·
1 点赞 ·
0 评论

因果推断笔记——DR :Doubly Robust学习笔记(二十)

文章目录0 观测数据的估计方法0.1 Matching0.2 Propensity Score Based Methods0.2.1 PSM0.2.2 IPW0.2.3 Doubly Robust0.2.4 数据驱动的变量分解算法(D²VD)0.3 Directly Confounder Balancing0.3.1 Entrophy Balancing0.3.2 Approximate Residual Balancing1 DR :Doubly Robust1.1 DR的理论基础1.1.1 ATE的估计
原创
发布博客 2021.12.20 ·
886 阅读 ·
1 点赞 ·
0 评论

因果推断杂记——因果推断与线性回归、SHAP值理论的关系(十九)

文章目录1 因果推断与线性回归的关系1.1 DML的启发1.2 特殊的离散回归 = 因果?2 因果推断中的ITE 与SHAP值理论的思考1 因果推断与线性回归的关系第一个问题也是从知乎的这个问题开始:因果推断(causal inference)是回归(regression)问题的一种特例吗?其中经济学大佬慧航提到过,回归只是工具,因果推断可以用,其他研究方向也可以用。在此给出我的看法,因果推断,是需要考虑干预得(Y|X,T),其中干预效应是主要的差异点;而一般的多元,只是(Y|X),并
原创
发布博客 2021.12.15 ·
1934 阅读 ·
3 点赞 ·
2 评论
加载更多