ComfyUI教学|Controlnet线稿处理+Softedge软边缘

本篇文章,我们会系列学习如何在ComfyUI中使用Controlnet。大家都知道,Controlnet主要应用于线条处理、深度处理和姿态控制,学会有助于我们提升我们的生图技巧,在我们ComfyUI中也是非常重要的部分,所以学会今天这节教学,可以让你的生图技巧再精进一步。在本篇教学中,我们将系列教学几种常用的Controlnet,分别是线稿处理Lineart,软边缘Softedge ,深度处理Depth,以及姿态控制open pose,以及如何使用双Controlnet。

本文我们重点学习线稿处理Lineart和软边缘Softedge 。

首先我们还是打开ComfyUI基础工作流,双击空白处搜索Controlnet ADV,选择Controlnet应用旧版高级。需要注意这里Controlnet选项比较多,我们不要选错。具体其他应该我们后面再介绍。

可以看到这个Controlnet应用旧版高级上的一些节点,左侧输入部分有正面条件、负面条件、Controlnet模型以及图像VAE输入。右侧输出节点就只有正面条件以及负面条件两个。对这些节点的了解,让我们能够正确连线。通常相同颜色的节点表示互有相关联,所以我们在连线的时候,一般将相同颜色节点连接在一起。如果连接错误,工作流就会跑图失败。

▲首先我们学习 Lineart线稿处理的使用方法。

Lineart线稿处理控制网,主要是通过提取图像的精细线条(如动漫风格的线条),达到控制生成图像的轮廓、服饰、面部特征等细节作用,相比传统的Canny边缘检测,Lineart的线条具有粗细和深浅变化,能更好地还原图像的深度和艺术风格。当我们在生图中需要保持人物姿态、服装设计或特定艺术风格一致性的场景(如角色设计),或需要清晰线条引导生成的创意项目就可以用它。

首先我们先把输入端正负面条件与文本编码器相连,接着将输出端与K采样器相连。接下来我们在空白处右键,新建一个Controlnet模型加载器,并在Controlnet模型加载器的最上面模型名称中输入我们想要的Controlnet模型。本次我们要操作Lineart线稿,所以我们直接在里面找到对应Lineart并选择即可。

再回到Controlnet应用旧版高级图像输入这边,拖出来按住shift键,在搜索栏内搜索Lineart,我们可以看到出现了很多有关的预处理器。既然我们要做的是一个的动漫线稿上色,那就需要选择Anime Lineart动漫艺术线预处理器。

空白处我们新建一个加载图像节点,并与Anime Lineart动漫艺术线预处理器的输入处相连,就可以得到一个图片上传的地方。我们把需要上色的图像给上传上来。当然这里我们也可以在这个预处理器的后边再添加一个预览图像节点,就可以看到预处理之后的图像长啥样,类似于WebUI中的效果预览。

把这些操作完成以后,我们就开始编辑提示词。这里给大家举个例子:一个logo,极简艺术。我们可以用一些大模型翻译成英文,然后粘贴到正向提示词输入中,然后我们把负面提示词也给改一下,输入一些标准的负面提示词,对于SD1.5的模型来说,大家可以在我这里提供的网址处进行复制https://zhuanlan.zhihu.com/p/640546302。

接着我们再把大模型给换成一个较为给力的SD1.5大模型。这里我们需要在K采样器节点再稍微调一调。比方说把迭代步数改成25步,CFG值设置成6.5,采样器DPN再加2M,调度器选择karras。我们这里调的参数是一般跑图正常参数,大家也可以根据自己的需要,自行调整相关参数。

那么这边我相信很多小伙伴会认为可以直接生图了,我们就来跑一下,看一下会出现什么样的情况。大家发现了吗?图片出来了,确实也上了色,怎么和我们原图不太相近呢?这个图片的比例是不是有点问题,这一点我们该如何去调整呢?

这时我们需要找到空latent节点,这边有宽度以及高度输入。有的小伙伴会说我们只要直接输入这张图片的宽高就好了。那么新的问题又来了,我们该如何知道这张图片它的尺寸究竟是怎么样的?

这又涉及到一个新的知识点,图像尺寸。首先双击空白处搜索图像尺寸,直接选择第一个图像尺寸,选择这个是属于easyuse节点包的节点。

我们也是直接把加载图像节点给连接到图像尺寸节点上。

但是貌似新的问题又出现了,我们该如何把图像尺寸与这个空latent相连?,如何让这个宽高匹配到我们的这个图像尺寸的输出?其实,只要在节点上右键一下,就可以转化为输入这边。比方说我们可以转化宽度为输入,接下来宽度就变成了一个输入选项了,这样我们就可以把它与图像尺寸节点相连。

同样的,我们把高度也是像刚才操作一样,高度与高度相连,这样一来我们再次中图,就可以看到此时这个图像的尺寸已经自动的匹配到了我们原图的图片尺寸,如果说我们把加载图像给换成一张正方形比例的图片,接下来我们再点击开始生图,又会发生什么样的情况呢?

可以看到最后的图像完美保持了原logo的线条,当然你如果需要换颜色之类的,可以在正面提示词了描述,这里我们仅展示Lineart控制网的效果。

▲接着我们学习另一个控制网模型SoftEdge(软边缘控制)。

SoftEdge软边缘控制用于检测图像的“软边缘”轮廓,生成相对宽松、柔性的边缘信息,适合非精准模仿的场景(如机甲、棱角分明的物体),或需要自然过渡的背景处理。当我们需要在复杂背景或需要弱化细节的场景中,SoftEdge能避免过度精确的边缘限制生成自由度,同时保留整体结构的时候就可以使用它。

我们还是在这个工作流中,先加载它的预处理器,双击屏幕搜索HED,接着看到这个HED模糊线预处理器OK。然后咱们把它和刚才的这个Lineart预处理器给替换一下。同样的图像输入就直接连接到咱们的原始图像上。然后我们也可以连接一个预览图像节点,它预处理处理之后的图像,它最关键的是这个预处理器的图像输出一定要和Controlnet相连。

接下来我们就上传咱们的参考图片。比方说下面的示例图吧 然后我们回到Controlnet这边,咱们把Controlnet模型给换成softedge模型。

先跑一张,看一下具体出图效果。

现在图片也是成功生成了,我们可以来看一下。这张图片在线条还原方面还是比较出彩的,如果你在生成的时候有一些莫名其妙的元素,如果不想要类似情况的出现,我们可以回到这个Controlnet的应用这里把softedge的强度给降低一些,可以设置为0.7,然后结束时间咱们就改成个0.9。咱们这么设置的意思就是告诉Controlnet在生图完成到90%的时候,就不需要你了,剩下的让K采样器自己去跑。

设置完之后,咱们再次点击开始生图,那么图片很快也是跑出来了,怎么样?这一次的生图效果是不是比刚才要优秀太多了?好的,这就是softedge的一个运用。

那么以上就是本篇文章的教学,希望大家能够学会并学以致用。同时在后续的文章中,我们还会讲解深度处理Depth,以及姿态控制open pose,以及如何使用双Controlnet。学完整个系列以后,相信大家就可以完美使用Controlnet控制网去处理生成的图像啦!

咱们文章每篇安排的内容不多,但是希望同学们能够学习消化,从而融入到实际的运用之中。欢迎感兴趣的小伙伴持续关注学习,我们致力于用最基础简单的语言,让你一键学会ComfyUI工作流!喜欢的小伙伴还可以加入无阶未来用户群,实时学习相关内容!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值