- 博客(53)
- 收藏
- 关注
转载 主动学习(Active Learning)
主动学习简介在某些情况下,没有类标签的数据相当丰富而有类标签的数据相当稀少,并且人工对数据进行标记的成本又相当高昂。在这种情况下,我们可以让学习算法主动地提出要对哪些数据进行标注,之后我们要将这些数据送到专家那里让他们进行标注,再将这些数据加入到训练样本集中对算法进行训练。这一过程叫做主动学习。主动学习方法一般可以分为两部分: 学习引擎和选择引擎。学习引擎维护一个基准分类器,...
2018-03-07 14:43:00 709
转载 主动学习——active learning
阅读目录1. 写在前面2. 什么是active learning?3. active learning的基本思想4. active learning与半监督学习的不同5. 参考文献1. 写在前面 在机器学习(Machine learning)领域,监督学习(Supervised learning)、非监督学习(Unsupervised ...
2018-03-07 14:27:00 239
转载 free命令中buffers和caches的区别
一、命令12345[root@localhost ~]# free -mtotal usedfreeshared buffers cachedMem: 7869 7651 218 ...
2017-12-20 22:14:00 176
转载 ubuntu14.0安装ITK的步骤
(1) sudo apt-get install cmake(2) sudo apt-get install cmake-curses-gui(3)下载安装包InsightToolkit-4.11.1.tar.gz,下载地址 sudo tar -xvf InsightToolkit-4.11.1.tar.gz mkdir build cd build/ ...
2017-08-24 21:26:00 171
转载 Ubuntu服务器上相关软件或应用时常打不开的问题
于接触linux系统时间不就,所以在操作上难免会出现失误,以下两个问题就是近期经常出现的问题,具体如下:1.ubuntu服务器上的浏览器时常打不开。2.安装的pycharm和系统自带的pycharm时常打不开。上述两个问题都是由于一个原因:即在离开远程控制终端时未正确关闭相关的软件或应用(这里我有时就没有正确关闭服务器自带的浏览器和pycharm软件),这就导致它们对应的进程...
2017-08-24 15:04:00 742
转载 机器学习之训练集_验证集_测试集
在NG的ML课程中和西瓜书中都有提到:最佳的数据分类情况是把数据集分为三部分,分别为:训练集(train set),验证集(validation set)和测试集(test set)。那么,验证集和测试集有什么区别呢? 实际上,两者的主要区别是:验证集用于进一步确定模型的参数(或结构)而测试集只是用于评估模型的精确度! 举个例子:假设建立一个BP神经网络,对于隐含层的节点...
2017-06-27 16:28:00 479
转载 VS C++ 并发编程
1.VS2012及以上版本,支持C++11 thread类的并发编程。相关材料可以参考博客:http://www.cnblogs.com/rangozhang/p/4468754.html2.但对其之前的版本,可采用以下方式,实现类成员函数创建子线程实现并发。 首先需实现线程类的run函数,故定义了线程类的头文件和其对应的函数实现,具体如图1,2所示:图1 线程类的...
2017-06-19 22:48:00 116
转载 Matlab保存uint16格式文件的相关注意事项
在matlab中,我们常使用imshow()函数来显示图像,而此时的图像矩阵可能经过了某种运算。在matlab中,为了保证精度,经过了运算的图像矩阵I其数据类型会从unit8型变成double型。如果直接运行imshow(I),我们会发现显示的是一个白色的图像。这是因为imshow()显示图像时对double型是认为在0~1范围内,即大于1时都是显示为白色,而imshow显示uint8...
2017-03-28 12:48:00 1085
转载 OpenCV中的SVM参数优化
OpenCV中的SVM参数优化svm参数优化opencv SVMSVR参数优化CvSVMopencv CvSVM SVM(支持向量机)是机器学习算法里用得最多的一种算法。SVM最常用的是用于分类,不过SVM也可以用于回归,我的实验中就是用SVM来实现SVR(支持向量回归)。 对于功能这么强的算法,OpenCV中自然也是有集成好了,我们可...
2017-03-19 20:56:00 144
转载 caffe之solver.prototxt文件参数设置
caffe solver参数意义与设置batchsize:每迭代一次,网络训练图片的数量,例如:如果你的batchsize=256,则你的网络每迭代一次,训练256张图片;则,如果你的总图片张数为1280000张,则要想将你所有的图片通过网络训练一次,则需要1280000/256=5000次迭代。epoch:表示将所有图片在你的网络中训练一次所需要的迭代次数,如上面的例子:500...
2017-03-15 10:11:00 102
转载 Caffe训练AlexNet网络,精度不高或者为0的问题结果
当我们使用Caffe训练AlexNet网络时,会遇到精度一值在低精度(30%左右)升不上去,或者精度总是为0,如下图所示:出现这种情况,可以尝试使用以下几个方法解决:1.数据样本量是否太少,最起码要千张图片样本。2.在制作训练样本标签时,是否打乱样本顺序,这样在训练时每取batch_size个样本就可以训练多个类别,以防止时出现常出现0精度或1精度的情况。3.文件so...
2017-03-11 15:35:00 879
转载 AlexNet的参数优化
优化算法的参数论文中使用SGD算法,基本参数设置在前面优化算法的总结中已经提到了。这里要说几个个人体会。a. 原文中输入的batch数目是256,应该Alex经过调节后的结果,我实际用到的机器性能比较低,内存8G,显存4G,所以不得不就将batch数目往下调到64,以免产生out of memory的错误。这样就需要调节其他的参数来保证数据的收敛。原因是batch比较小,导致本文开篇提...
2017-03-09 22:41:00 685
转载 制作Label标签文件时,使用convert_imageset.exe的注意事项
当前的convert_imageset.exe版本做了一下修改//status = ReadImageToDatum(root_folder + lines[line_id].first,//lines[line_id].second, resize_height, resize_width, is_color,//enc, &datum);改为了下面的程序,...
2017-03-09 16:40:00 159
转载 Caffe训练AlexNet网络模型——问题一
训练AlexNet网络时,出现Check failed:datum_height >= crop_size (size vs. 227)错误,具体如下图所示:根据提示,问题是crop_size的尺寸不匹配,AlexNet网络默认crop_size的尺寸是227*227,而我进行归一化时将每幅图像归一化成了32*32,所以这里出现问题。在train_val.prototx...
2017-03-09 16:33:00 235
转载 Caffe训练AlexNet网络模型——问题二
训练时,出现Check failed:error == cudaSuccess (2 vs. 0) out of memory,并且accruary = 0,如下图所示:解决方法:将train_val.prototxt文件中的batch_size变小一点,如下图所示:也可参见博客:http://blog.csdn.net/u013066730/article/deta...
2017-03-09 16:02:00 132
转载 使用Caffe训练适合自己样本集的AlexNet网络模型,并对其进行分类
1.在开始之前,先简单回顾一下几个概念。Caffe(Convolution Architecture For Feature Extraction-卷积神经网络框架):是一个清晰,可读性高,快速的深度学习框架。CUDA(Compute Unifined Device Architecture-计算统一设备框架):是显卡厂商NVIDIA推出的运算平台。 CUDA是一种由NVID...
2017-03-09 15:41:00 290
转载 将C++ IplImage 图像用C#读取
如何将C++IplImage 图像用C#读取 ?将opencv 的C++程序做成 dll 动态链接库 用C#调用当然这里需要安装emgucv ,也可以自己实现这个类。下面我把实现贴出来给大家参考:1.制作dll #include"stdafx.h"#defineDLL_APIextern"C"_declspec(dlle...
2017-03-09 14:52:00 353
转载 PCA(Principal Component Analysis)主成分分析
PCA的数学原理(非常值得阅读)!!!!PCA(Principal Component Analysis)是一种常用的数据分析方法。PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维。网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理。这篇文章的目的是介绍PCA的...
2017-03-09 14:51:00 191
转载 安装caffe框架所需文件
安装caffe框架所需文件:1.微软提供的快速卷积神经网络框架caffe-master安装包或者windows提供的caffe-windows安装包。链接:http://pan.baidu.com/s/1hs8ngpA 密码:ith02.并行计算框架CUDA**,注意要和你电脑上安装的NVIDA显卡驱动的版本所对应(此处要根据电脑上的显卡类型,更新显卡驱动程序为最新版本,比如...
2017-03-09 14:39:00 165
转载 Caffe训练AlexNet网络模型——问题三
caffe 进行自己的imageNet训练分类:loss一直是87.3365,accuracy一直是0解决方法: http://blog.csdn.net/jkfdqjjy/article/details/52268565?locationNum=14知道了原因,解决时就能对症下药。总体上看,softmax输入的feature由两部分计算得到:一部分是输入数据,另部分是各...
2017-03-09 14:23:00 167
转载 【caffe-Windows】微软官方caffe之matlab接口配置,以及安装caffe的注意事项
1.在此之前,记录一下之前的错误,在参考博客【caffe-Windows】caffe+VS2013+Windows+GPU配置+cifar使用进行caffe的安装时,其中的一些步骤可以不做,具体见下图:如果加上,后面编译caffe.sln的16个项目时,就会缺少很多类似cublas.h头文件,和相关类似cublas.lib的lib文件,安装CUDA后会自动生成CUDA_PATH,...
2017-03-07 18:51:00 109
转载 安装Caffe时出现的错误
一、error MSB3073类错误一般是由于CommonSettings.props配置出现错误。第一处是你安装CUDA的版本号,第二次是你安装cudnn的路径。也可参照http://blog.csdn.net/lichantidings/article/details/51854010二、编译libcaffe,caffe工程时出错上面少的cublas.h,...
2017-03-07 15:58:00 125
转载 QT编译发布程序后报错如缺少dll、“应用程序无法正常启动(0xc000007b)”的可能解决方法...
QT编译发布程序后报错如缺少dll、“应用程序无法正常启动(0xc000007b)”的可能解决方法最近项目要用qt,因为初学没有经验,遇到些小问题常常没什么头绪,也查不到解决方法,刚刚还因为低端错误耽误了群里一位朋友的时间。决定以后如果遇到类似小问题就记录下来,也方便初学者少走弯路了。首先,qt动态编译发布程序一般是在Qtcreater中编译出release版本...
2017-03-04 14:22:00 1141
转载 如何使用Inno Setup Compiler制作安装软件包
工具/原料Inno Setup Compiler汉化版软件方法/步骤启动Inno Setup Compiler汉化版软件。选择创建新的空白脚本文件,按确定。然后按下一步。在相应的项目...
2017-03-04 10:42:00 262
转载 Qt工程打包发布
1、添加环境变量在..\Qt5.7.0\5.7\msvc2013_64\bin(..省略了盘符,例如我的是D:\Qt\Qt5.7.0\5.7\msvc2013_64\bin) 目录下找到windeployqt.exe ,进入系统高级设置-环境变量-path,将windeployqt.exe所在路径添加到环境变量中;2、查找依赖库将Release中生成的.exe文...
2017-03-04 10:39:00 83
转载 svm 中采用自动搜索参数的方式获得参数值
载时自http://blog.csdn.net/u011177305/article/details/46458801?locationNum=1OpenCV中SVM类是提供了优化参数值功能的,下面讲讲具体的做法。要让svm自动优化参数,那么训练时就不能再用train函数了,而应该用train_auto函数。下面是train_auto的函数原型C++: bool Cv...
2017-03-04 10:16:00 187
转载 OpenCV中的SVM参数优化
OpenCV中的SVM参数优化标签:svm参数优化opencv SVMSVR参数优化CvSVMopencv CvSVM2014-08-19 10:312995人阅读评论(8)收藏举报分类:机器学习(11)opencv(18)版权声明:本文为博主原创文章,未经博主允许不得转载。 SVM(支持向量机)是机...
2017-03-03 17:05:00 146
转载 openCV训练程序申请内存不足
openCV训练程序申请内存不足在用OpenCV训练分类器(特别是训练Adaboost类型的分类器)的时候,当样本的数量特别大的时候,就会出现申请内存不够的情况,很早以前碰到过这样的情况,最近再训练的时候又出现了这样的情况,于是在网上找了一下解决方法。首先给出我的配置吧,win7 64位 + vs2010 + opencv2.4.9,其实这个问题的产生应该只与...
2017-03-02 09:28:00 287
转载 opencv计算运行时间
double Time = (double)cvGetTickCount();// 算法过程Time= (double)cvGetTickCount() - Time;printf( "run time = %gms\n", Time/(cvGetTickFrequency()*1000) );//毫秒printf( "run time = %gs\n", Time/(...
2016-12-29 21:02:00 382
转载 马氏距离(Mahalanobis distance)
马氏距离(Mahalanobis distance)是由印度统计学家马哈拉诺比斯(P. C. Mahalanobis)提出的,表示数据的协方差距离。它是一种有效的计算两个未知样本集的相似度的方法。与欧氏距离不同的是它考虑到各种特性之间的联系(例如:一条关于身高的信息会带来一条关于体重的信息,因为两者是有关联的)并且是尺度无关的(scale-invariant),即独立于测量尺度。...
2016-10-12 23:35:00 1508
转载 协方差及协方差矩阵
一、统计学的基本概念 统计学里最基本的概念就是样本的均值、方差、标准差。首先,我们给定一个含有n个样本的集合,下面给出这些概念的公式描述:均值:标准差:方差: 均值描述的是样本集合的中间点,它告诉我们的信息是有限的,而标准差给我们描述的是样本集合的各个样本点到均值的距离之平均。 以这两个集合为例,[0, 8, 12, 20]和[8, 9, 11,...
2016-10-12 23:07:00 267
转载 模糊数学_模糊集
理.查德(L. Zadeh)的主要贡献在于把模糊性和数学统一在一起,模糊数学不是把已经很精确的数学变得模模糊糊,而是用精确的数学方法来处理过去无法用数学描述的模糊事物。因为现实世界中要想绝对精确是不可能的,实际上只能将所谓的不准确程度降低到无关紧要的水平罢了。L. Zadeh 的观点不是让数学放弃严格性去迁就模糊性,而是让数学回过头来吸取人脑对模糊现象识别和判决处理的优点。...
2016-10-04 10:00:00 216
转载 QT,静态变量要记得初始化
//DbUtil.h#ifndef DBUTIL_H#define DBUTIL_Husing namespace std;QString md5Encode(QString passwd);class DbUtil {public: static QString checkNameT; static void setCheckNameStat...
2016-08-31 20:10:00 2108
转载 在dll里malloc/new/cvCreate分配内存,在exe里free/Releases释放内存时会出错。
写了个程序,在DLL中用malloc分配了一块内存,但是在exe程序中释放,结果程序crash,原因就是:其原因可能是堆被损坏,这也说明 TestMySticker.exe 中或它所加载的任何 DLL 中有 bug。以下文字引用自http://hi.baidu.com/huhe/blog/item/0b422edd1f1563d98c1029a3.html一个模块一个堆,一个线...
2016-08-18 21:38:00 117
转载 其原因可能是堆被损坏,这说明 100BloodCellSegTest.exe 中或它所加载的任何 DLL 中有 Bug。...
这个问题可能是内存空间释放了两次,比如使用cvLoadImage函数时IplImage* img = cvLoadImage(buf.c_str(),1);,注意要释放内存,但不要释放了两次cvReleaseImage(&img);转载于:https://www.cnblogs.com/hust-yingjie/p/5685166.html...
2016-07-19 15:55:00 88
转载 debug : 应用程序无法正常启动(0xc000007b)
转载于:https://www.cnblogs.com/hust-yingjie/p/5682410.html
2016-07-18 19:33:00 736
转载 牛顿方法(Newton's Method)
在讲义《线性回归、梯度下降》和《逻辑回归》中我们提到可以用梯度下降或梯度上升的方式求解θ。在本文中将讲解另一种求解θ的方法:牛顿方法(Newton's method)。牛顿方法(Newton's method) 逻辑回归中利用Sigmoid函数g(z)和梯度上升来最大化ℓ(θ)。现在我们讨论另一个最大化ℓ(θ)的算法----牛顿方法。...
2016-07-12 18:18:00 309
转载 广义线性模型(Generalized Linear Models)
前面的文章已经介绍了一个回归和一个分类的例子。在逻辑回归模型中我们假设: 在分类问题中我们假设: 他们都是广义线性模型中的一个例子,在理解广义线性模型之前需要先理解指数分布族。指数分布族(The Exponential Family) 如果一个分布可以用如下公式表达,那么这个分布就属于指数分布族:...
2016-07-11 21:55:00 304
转载 逻辑回归(Logistic Regression)
本文主要讲解分类问题中的逻辑回归。逻辑回归是一个二分类问题。二分类问题 二分类问题是指预测的y值只有两个取值(0或1),二分类问题可以扩展到多分类问题。例如:我们要做一个垃圾邮件过滤系统,是邮件的特征,预测的y值就是邮件的类别,是垃圾邮件还是正常邮件。对于类别我们通常称为正类(positive class)和负类(negative class),垃圾邮件...
2016-07-11 21:52:00 123
转载 局部加权回归、欠拟合、过拟合(Locally Weighted Linear Regression、Underfitting、Overfitting)...
欠拟合、过拟合 如下图中三个拟合模型。第一个是一个线性模型,对训练数据拟合不够好,损失函数取值较大。如图中第二个模型,如果我们在线性模型上加一个新特征项,拟合结果就会好一些。图中第三个是一个包含5阶多项式的模型,对训练数据几乎完美拟合。 模型一没有很好的拟合训练数据,在训练数据以及在测试数据上都存在较大误差,这种情况称之为欠拟合(underfitting)。...
2016-07-11 21:16:00 149
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人