题目链接:
https://www.luogu.com.cn/problem/P2296
算法:
dijkstra变形
思路:
1:存图时,也反向存一份,因为题目要求所求最短路径上的点的连接点也必须可以到达终点t,因此先从终点t跑反向图,找到此时的d[i]为1e9,即不可达,那么在反向图中,这些点所指向的点就是正向图中,不可以走的点,将这些点用vis[]数组标记,然后跑正向图的时候就利用vis数组的值把不能出现在所求的最短路径上的点排除在外
2:第一次ac时,因为不知道如何把vector<pair<int,int> >e[maxn]作为函数的参数传入,所以dijkstra函数写了两个版本,写了两遍,查百度之后发现,其可以作为函数参数传入,改进了代码
3:也要特别注意vis[]数组在巧妙解决第二遍dijkstra排除不能出现在最短路径上的点的时候的关键作用
一:两个dijkstra函数
#include <bits/stdc++.h>
using namespace std;
const int maxn=1e4+1;
vector<pair<int,int> >e[maxn];
vector<pair<int,int> >mapp[maxn];
int n,m,s,t,a,b,d[maxn],vis[maxn];
void init()
{
for(int i&#