- 博客(21)
- 收藏
- 关注
原创 因子分析一个简单示例
如何提取因子以及确定因子数量尤为重要,最好PCA和MLE方法都尝试下,来提升结果的稳健性。如何对因子进行命名以及对潜在的机制进行解释尤为重要。
2024-07-22 13:45:22 188
原创 多维尺度变换降维
基于n维空间中两点距离的远近进行降维是数据分析中常用的方法。在运用中一定要注意两点间的距离矩阵以及矩阵的分解和变化。最后要注意降维过程中可能存在的信息损失。
2024-07-22 13:44:38 184
原创 求ROC曲线的AUC
这里采用的是非数值积分法,通过简单的0-1收益法,来近似两种简单信号检测的效果,通过对比,第二种检测方法明显优于第一种检测方法。大家要通过设置不同的样本量,不断训练。
2024-07-22 13:42:47 190
原创 决策树回归图形展示
进行决策树回归时注意数据类型的匹配,然后注意不同深度决策树之间预测的比较。最后真实函数曲线以及数据点也都显示出来,能清晰展示预测误差。
2024-07-22 13:42:13 128
原创 绘制正态分布均值的测试误差和训练误差
一定要会求测试误差的表达式,一般有解析解,可以求出损失函数的最小值点。然后通过多次模拟训练误差,看其是否能够很好地模拟了测试误差的形状。
2024-07-22 13:41:05 111
原创 用Python掷骰子
随机模拟在科研论文中至关重要,要注意验证随着投掷次数的增多,随机变量的概率分布是否收敛理论概率。最后一定要自己亲手计算下理论概率,掌握住背后的逻辑。
2024-06-21 16:04:30 206
原创 随机漫步唯美可视化
随机漫步可视化是做研究的必备技能,学好python、写好论文,也逐渐成为每一个研究生的必备项。专注python代码和论文写作。欢迎共同爱好者交流。
2024-06-18 10:29:19 212
原创 Python深度学习入门(2)阶跃函数
python #python学习 #深度学习 #博士 #研究生 #论文 #大学生 #博士申请 #机器学习 #深度学习。大家开始学习的时候一定要熟练画出信号转化函数的图形。
2024-06-13 14:43:59 86
原创 Python深度学习(1)二层感知机
用二层感知机实现异或门,代码和方法都简单但是原理很重要,是神经网络的基础。这里涉及到函数套函数,注意函数之间以及变量之间的关系。#python #python学习 #考博 #博士论文 #博士学习 #博士申请 #论文 #论文写作#论文发表。
2024-06-13 14:41:02 213
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人