- 博客(4)
- 收藏
- 关注
原创 机器学习Task5——SVM
SVM支持向量机-SVM(Support Vector Machine)从本质来说是一种:用一条线(方程)分类两种事物硬间隔最小间距超平面:所有样本到平面的距离最小。而距离度量有了函数间隔和几何间隔,函数间隔与法向量www和bbb有关,www变为2w2w2w则函数间距变大了,于是提出了几何距离,就是对www处理,除以∣∣w∣∣||w||∣∣w∣∣,除以向量长度,从而让几何距离不受影响。但是...
2020-05-01 17:15:41 172
原创 机器学习Task3——EM算法
1、EM算法概念最大期望算法(Expectation-maximization algorithm,又译为期望最大化算法),是在概率模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐性变量。最大期望算法经过两个步骤交替进行计算,第一步是计算期望(E),利用对隐藏变量的现有估计值,计算其最大似然估计值;第二步是最大化(M),最大化在E步上求得的最大似然值来计算参...
2020-04-26 21:54:28 194
原创 机器学习Task2——朴素贝叶斯
相关概念:生成模型:在概率统计理论中, 生成模型是指能够随机生成观测数据的模型,尤其是在给定某些隐含参数的条件下。它给观测值和标注数据序列指定一个联合概率分布。在机器学习中,生成模型可以用来直接对数据建模(例如根据某个变量的概率密度函数进行数据采样),也可以用来建立变量间的条件概率分布。条件概率分布可以由生成模型根据贝叶斯定理形成。常见的基于生成模型算法有高斯混合模型和其他混合模型、隐马尔可夫...
2020-04-23 20:08:16 292
原创 线性回归及python实现
线性回归及python实现1、线性回归有数据集(x1,y1),(x2,y2),...,(xn,yn){(x_1,y_1),(x_2,y_2),...,(x_n,y_n)\\}(x1,y1),(x2,y2),...,(xn,yn),其中,xi=(xi1,xi2,xi3,...,xid),yi∈Rx_i = (x_{i1},x_{i2},x_{i3},...,x_{id}),y_i \...
2020-04-21 21:23:47 339
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人