- 博客(5)
- 收藏
- 关注
转载 大作业
一、boston房价预测 1. 读取数据集 2. 训练集与测试集划分 3. 线性回归模型:建立13个变量与房价之间的预测模型,并检测模型好坏。 4. 多项式回归模型:建立13个变量与房价之间的预测模型,并检测模型好坏。 5. 比较线性模型与非线性模型的性能,并说明原因。 # 多元线性回归模型 from sklearn.datasets import load_b...
2018-12-23 23:06:00 130
转载 回归模型与房价预测
#导入boston房价数据集from sklearn.datasets import load_bostonimport pandas as pd boston = load_boston()df = pd.DataFrame(boston.data) #一元线性回归模型,建立一个变量与房价之间的预测模型,并图形化显示。from sklearn.linear_model impor...
2018-12-20 23:53:00 305
转载 12.03
1. 数据准备:收集数据与读取 2. 数据预处理:处理数据 3. 训练集与测试集:将先验数据按一定比例进行拆分。 4. 提取数据特征,将文本解析为词向量 。 5. 训练模型:建立模型,用训练数据训练模型。即根据训练样本集,计算词项出现的概率P(xi|y),后得到各类下词汇出现概率的向量 。 6. 测试模型:用测试数据集评估模型预测的正确率。 混淆矩阵 准确率、精确率、召回率...
2018-12-03 11:38:00 71
转载 10.25
一、处理日期时间import datetime; now=datetime.datetime.now() print(now), from datetime import datetime,timedelta print(datetime.now()) print(datetime(2019,1,1)) t = datetime.strptime('2017年9月3...
2018-10-25 22:20:00 112
转载 四次作业1015
fo= open('C:\Users\Administrator\Desktop','r',encoding="utf-8") #从同一目录下读取文件 strgc = fo.read() #小写 fo.close() print(strgc) seq ='.,' for ch in seq: strgc=strgc.replace(ch," ") ...
2018-10-15 10:47:00 76
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人