- GPU选择
一般个人用户选择Nvidia GTX系列。
主要参数1:计算能力,主要关心32位浮点计算能力
2,内存大小,随着深度学习深入,或者训练时批量越大,GPU内存也要越大(不要小于4GB,如果显示图形界面,不小于6GB)
3、内存宽带,足够大才能运行顺畅
入门1050Ti不错(1300大洋)、
整机装配:1、不考虑机箱太小的,因为GPU较大,自带风扇要好
2、检查GPU功耗,50-300W不等,因此电源功率要足够
3、主板PCLe卡槽,推荐使用PCIe 3.0 16x来保证足够的GPU到主内存带宽
机器学习简介
一、join语法
join(): 连接字符串数组。将字符串、元组、列表中的元素以指定的字符(分隔符)连接生成一个新的字符串
举例
res
=
[]
for
i
in
range
(
1
,
101
):
if
i
%
15
==
0
:
res
.
append
(
'fizzbuzz'
)
elif
i
%
3
==
0
:
res
.
append
(
'fizz'
)
elif
i
%
5
==
0
:
res
.
append
(
'buzz'
)
else
:
res
.
append
(
str
(
i
))
print
(
' '
.
join
(
res
))
如果最后一行直接写成print(res)结果是
['1', '2', 'fizz', '4', 'buzz', 'fizz', '7', '8', 'fizz', 'buzz', '11', 'fizz', '13', '14', 'fizzbuzz', '16', '17', 'fizz', '19', 'buzz', 'fizz', '22', '23', 'fizz', 'buzz', '26', 'fizz', '28', '29', 'fizzbuzz', '31', '32', 'fizz', '34', 'buzz', 'fizz', '37', '38', 'fizz', 'buzz', '41', 'fizz', '43', '44', 'fizzbuzz', '46', '47', 'fizz', '49', 'buzz', 'fizz', '52', '53', 'fizz', 'buzz', '56', 'fizz', '58', '59', 'fizzbuzz', '61', '62', 'fizz', '64', 'buzz', 'fizz', '67', '68', 'fizz', 'buzz', '71', 'fizz', '73', '74', 'fizzbuzz', '76', '77', 'fizz', '79', 'buzz', 'fizz', '82', '83', 'fizz', 'buzz', '86', 'fizz', '88', '89', 'fizzbuzz', '91', '92', 'fizz', '94', 'buzz', 'fizz', '97', '98', 'fizz', 'buzz']
看起来很杂乱
‘ ’.join(res)表示将字符串连接成新的字符串,并以空格间隔,新的结果
1 2 fizz 4 buzz fizz 7 8 fizz buzz 11 fizz 13 14 fizzbuzz 16 17 fizz 19 buzz fizz 22 23 fizz buzz 26 fizz 28 29 fizzbuzz 31 32 fizz 34 buzz fizz 37 38 fizz buzz 41 fizz 43 44 fizzbuzz 46 47 fizz 49 buzz fizz 52 53 fizz buzz 56 fizz 58 59 fizzbuzz 61 62 fizz 64 buzz fizz 67 68 fizz buzz 71 fizz 73 74 fizzbuzz 76 77 fizz 79 buzz fizz 82 83 fizz buzz 86 fizz 88 89 fizzbuzz 91 92 fizz 94 buzz fizz 97 98 fizz buzz
二、 机器模型最简单要素
1、数据:包括各种非线性数据模型,图像、文本、声音、影像、结构化数据
2、模型:这个教程主要聚焦于深度神经网络模型
3、损失函数:衡量输出预测值和真实值的误差大小,包含训练误差、测试误差
4、优化算法:通盘考虑模型选择和损失函数,对参数进行搜索,最小化损失。最常见的神经网络优化使用梯度下降法作为优化算法
三、监督学习
在一大组数据中随机的选择样本输入,并获得其真是的标注(label),这些输入和标注构成了训练集,我们把训练集放入一个监督学习算法,输入的是训练集,输出的是学得模型。基于这个学得模型,我们再输入以前未见过的测试数据集,并预测其相应的标注。
回归分析是监督学习里最简单的一个任务,输入是连续或离散的、单一或多类的变量,而输出的是连续的数值。
例如一分房屋的数据集,每一行对应一栋房子,每一列对应房屋属性,如面积,卧室数量、卫生间数量等,将数据集里这样的一行称为特征向量,他所代表的对象(比如一栋房子)称为样例。
自我理解:特征向量可以理解为可以代表对象特殊、特定属性的向量集
模型输出值和真实的输出值的差别称为残差,常见回归分析的损失函数包括训练数据的残差平方和或者绝对值的和,机器学习的任务也就是找到一组模型参数使损失函数最小化。
分类问题的损失函数称为交叉熵损失函数,
有监督学习就是有标注,无监督学习顾名思义就是没有标注,没有了特定的指示,需要更多的发挥创造力,简单的包括聚类、主成分分析、表征学习、生成对抗网络等
强化学习(RL) 可以应用到机器人程序、语音交互系统、电子游戏AI开发
当环境得到充分观察时,将这类RL问题成为马尔科夫决策过程(没太理解,再具体了解一下)