分布式并行计算MapReduce

作业来自:https://edu.cnblogs.com/campus/gzcc/GZCC-16SE2/homework/3319

1.用自己的话阐明Hadoop平台上HDFS和MapReduce的功能、工作原理和工作过程。

  整个Hadoop的体系结构主要是通过HDFS来实现对分布式存储的底层支持,并通过MR来实现对分布式并行任务处理的程序支持。  HDFS采用主从(Master/Slave)结构模型,一个HDFS集群是由一个NameNode和若干个DataNode组成的(在最新的Hadoop2.2版本已经实现多个NameNode的配置-这也是一些大公司通过修改hadoop源代码实现的功能,在最新的版本中就已经实现了)。NameNode作为主服务器,管理文件系统命名空间和客户端对文件的访问操作。DataNode管理存储的数据。HDFS支持文件形式的数据。  从内部来看,文件被分成若干个数据块,这若干个数据块存放在一组DataNode上。NameNode执行文件系统的命名空间,如打开、关闭、重命名文件或目录等,也负责数据块到具体DataNode的映射。DataNode负责处理文件系统客户端的文件读写,并在NameNode的统一调度下进行数据库的创建、删除和复制工作。NameNode是所有HDFS元数据的管理者,用户数据永远不会经过NameNode。

2.HDFS上运行MapReduce

1)准备文本文件,放在本地/home/hadoop/wc

2)编写map函数和reduce函数,在本地运行测试通过

 

3)启动Hadoop:HDFS, JobTracker, TaskTracker

4)把文本文件上传到hdfs文件系统上 user/hadoop/input 

5)streaming的jar文件的路径写入环境变量,让环境变量生效

6)建立一个shell脚本文件:streaming接口运行的脚本,名称为run.sh

7)source run.sh来执行mapreduce

8)查看运行结果

每位同学准备不一样的大一点英文文本文件,每个步骤截图交上博客上。

上述步骤测试通过之后,可以尝试对文本做处理之后再统计次数,如标点符号、停用词等。

有能力的同学尝试对之前爬虫爬取的文本,在Hadoop上做中文词频统计。

转载于:https://www.cnblogs.com/1234zzj/p/10987197.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值