😄😊😆😃😄😊😆😃
开始cpp刷题之旅。
目标:执行用时击败90%以上使用 C++ 的用户。
5. 最长回文子串
给你一个字符串 s,找到 s 中最长的回文子串。
如果字符串的反序与原始字符串相同,则该字符串称为回文字符串。
示例 1:
输入:s = “babad”
输出:“bab”
解释:“aba” 同样是符合题意的答案。
示例 2:
输入:s = “cbbd”
输出:“bb”
解题:
这题目是一个回文串的题目。与题九回文数相比,之所以能成为一个中等难题,是因为回文串的中心位置不定。
题九,你只需要判断一个字符串是否是回文串,那么只有两种情况可以考虑:
情况一:s=“abba”;
情况二:s=“aba”;
那我们直接就可以对字符串判断是否为这两种情况即可。
而当前题,中心位置不定,那我们该如何去找这个中心位置,并求出关于此中心位置对称的最大回文串呢?
首先考虑的一种情况,字符串只有单个时,那么直接返回即可。
当字符串字符数大于一时。我们对其进行遍历循环,判断当前字符是否为回文串的对称中心不就可以了吗。
考虑先写一个判断是否为回文串的函数,其输入变量为
一个字符串,一个左指针,一个右指针,记录的起始值,最大回文长度值。
起始值和最大回文长度值是为了从原字符串中截取题目的解。
最后只要在原字符串中截取一个字符串,该字符串从左指针开始,长度为最大回文串长度。
截取的字符串即为该字符串的最大回文子串了。
注意,在循环遍历字符串时,我们仍要分为两种情况去考虑:
情况一:“abba”;
情况二:“aba”;
class Solution {
public:
string longestPalindrome(string s) {
if(s.size()<2) return s;
int start=0;
int maxlen=1;
for(int i=0;i<s.size();i++)
{
Palindrome(s,i,i,start,maxlen);
Palindrome(s,i,i+1,start,maxlen);
}
return s.substr(start,maxlen);
}
void Palindrome(const string &s,int left,int right,int &start,int &maxlen)
{
while(left>=0&&right<s.size()&&s[left]==s[right])
{
if(right-left+1>maxlen)
{
maxlen=right-left+1;
start=left;
}
right++;
left--;
}
}
};
看一下提交记录:
刚好击败90%的用户,这种想法虽然不是效率最高的解法,但是我感觉挺好理解的。