leetcode32 最长有效括号(动态规划困难题)

给你一个只包含 '(' 和 ')' 的字符串,找出最长有效(格式正确且连续)括号子串的长度。

示例 1:

输入:s = "(()"
输出:2
解释:最长有效括号子串是 "()"
示例 2:

输入:s = ")()())"
输出:4
解释:最长有效括号子串是 "()()"
示例 3:

输入:s = ""
输出:0

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/longest-valid-parentheses

一:暴力解法(容易理解但时间复杂度很高)

        看到这题首先最容易想到的思路就是求出字符串中以每个字符为结尾的最长有效括号子字符串长度,想到这就想到了使用动态规划,但本题的状态转移方程不是很好确定,我会在下面写动态规划的解法。而求以每个字符为结尾的最长子字符串最简答的方式就是通过栈来暴力求解,具体方法就是从当前字符向前遍历,直到不符合条件为止。

这里需要注意的几个问题:

1.因为这里是从后向前遍历的,所以与平时不同的是碰到右括号时入栈,碰到左括号时出栈;

2.如何确定打破循环的条件:当栈为空且下一次入栈的字符为‘('时;

3.在一般的判断是否有效括号的题中,如果遍历完后栈不为空则直接断定它无效,但是本题可能会出现这种情况:"))()",如果从最后一个字符向前遍历,它有一部分是有效的,那么该怎么排除掉前面无效的部分呢。我在这里设置了一个temp变量,除了开始的时候如果栈为空了则说明已经有了一组有效括号,此时通过tmep来记录它的长度。然后再继续向前遍历,因为后面还有可能有有效括号,当遍历结束时发现栈不为空则直接返回temp,即前面有效的部分。

class Solution {
    public int longestValidParentheses(String s) {
        if (s.length() == 0) return 0;
        int ans = 0;
        int[] dp = new int[s.length()];
        for (int i = 0; i < s.length(); i++) {
            
        }
        return ans;
    }
    public int a (String s, int x) {
        Deque<Character> stack = new LinkedList<>();
        int res = 0;
        int temp = 0;
        for (int i = x; i >= 0; --i) {
            if (stack.isEmpty() && i != s.length() - 1 && s.charAt(i + 1) == '(') temp = res;
            if (stack.isEmpty() && s.charAt(i) == '(') break;
            else if (s.charAt(i) == ')') stack.addLast(s.charAt(i));
            else if (s.charAt(i) == '(') {
                stack.pollLast();
            }
            res++;
        }
        if(!stack.isEmpty()) return temp; 
        return res;
    }
}

二:动态规划

动态规划的关键是确定状态转移方程,也是同上种思路一样要求出字符串中以每个字符为结尾的最长有效括号子字符串长度,并记录在数组dp[]中,具体思路如下:

遍历字符串

1.如果当前字符为'('时,无法形成以当前字符为结尾的有效括号子字符串;

2.如果当前字符为')'时:

        2.1 i-1位置的字符为’(',此时该字符与上一字符形成了一个有效括号,直接让dp[i-2]+2即可,但要考虑i-2是否大于0;

        2.2 i-1位置的字符为')',此时如果要形成有效字符串"..(.....))"要满足如下条件:

                1.dp[i - 1] 大于0,因为这两个括号中间必须也是有效括号,一组无效括号外面套一组括号也是无效的;

                2.i - dp[i - 1] - 1大于等于零,i - dp[i - 1] - 1即i对应的左括号的位置;

                3.对应的左括号的位置要为'('否则为无效括号;

                4.满足以上条件后,可以判定dp[i]大于等于dp[i - 1] + 2,因为可能出现这种情况:"()(())",在这个例子中当dp[5]=2,dp[6]=6,这是因为连上对应位置的左括号后,左括号左边如果也有有效括号要一起算进来。

class Solution {
    public int longestValidParentheses(String s) {
        int ans = 0;
        int[] dp = new int[s.length()];
        for (int i = 1; i < s.length(); i++){
            if (s.charAt(i) == ')') {
                if (s.charAt(i - 1) == '(') {
                    if (i >= 2) dp[i] = dp[i - 2] + 2;
                    else dp[i] = 2;
                }else if (i - dp[i - 1] - 1>= 0 > 0 && s.charAt(i - dp[i - 1] - 1) == '(') {
                    dp[i] = dp[i - 1] + ((i - dp[i - 1]) >= 2 ? dp[i - dp[i - 1] - 2] : 0) + 2;
                }
                ans = ans > dp[i] ? ans : dp[i];
            }
        }
        return ans;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值