1、深度优先搜索介绍
图的深度优先搜索(Depth First Search),和树的先序遍历比较类似。
它的思想:假设初始状态是图中所有顶点均未被访问,则从某个顶点v出发,首先访问该顶点,然后依次从它的各个未被访问的邻接点出发深度优先搜索遍历图,直至图中所有和v有路径相通的顶点都被访问到。 若此时尚有其他顶点未被访问到,则另选一个未被访问的顶点作起始点,重复上述过程,直至图中所有顶点都被访问到为止。
显然,深度优先搜索是一个递归的过程。
2、广度优先搜索介绍
广度优先搜索算法(Breadth First Search),又称为"宽度优先搜索"或"横向优先搜索",简称BFS。
它的思想是:从图中某顶点v出发,在访问了v之后依次访问v的各个未曾访问过的邻接点,然后分别从这些邻接点出发依次访问它们的邻接点,并使得“先被访问的顶点的邻接点先于后被访问的顶点的邻接点被访问,直至图中所有已被访问的顶点的邻接点都被访问到。如果此时图中尚有顶点未被访问,则需要另选一个未曾被访问过的顶点作为新的起始点,重复上述过程,直至图中所有顶点都被访问到为止。
换句话说,广度优先搜索遍历图的过程是以v为起点,由近至远,依次访问和v有路径相通且路径长度为1,2...的顶点。
3、代码实现
深度优先搜索需要用到Stack
广度优先搜索需要用到Queue
顶点类:
public class Vertex {
public char label;
// 标识是否已经被访问过了
public boolean isVisit;
public Vertex(char label, boolean isVisit) {
this.label = label;
this.isVisit = isVisit;
}
}
图类:
public class Graph {
// 顶点的数组
private Vertex[] vertexList;
// 邻接矩阵
private int[][] adjMat;
// 数组最大大小
private int maxSize;
// 当前数组大小
private int nVertex;
/**
* 初始化顶点数组、邻接矩阵
*/
public Graph(int maxSize) {
this.maxSize = maxSize;
vertexList = new Vertex[maxSize];
adjMat = new int[maxSize][maxSize];
for (int i = 0; i < maxSize; i++) {
for (int j = 0; j < maxSize; j++) {
adjMat[i][j] = 0;
}
}
nVertex = 0;
}
/**
* 添加顶点
*/
public void addVertex(char label) {
vertexList[nVertex++] = new Vertex(label, false);
}
/**
* 添加边
*/
public void addEdge(int start, int end) {
adjMat[start][end] = 1;
adjMat[end][start] = 1;
}
/**
* 深度优先搜索
*/
public void dfs() {
// 从0号顶点开始
int v = 0;
String result = vertexList[v].label + " ";
vertexList[v].isVisit = true;
MyStack stack = new MyStack();
stack.push(v);
while (!stack.isEmpty()) {
v = stack.peek();
// 得到未访问过的邻接点
int unvisitedVertex = getUnvisitedVertex(v);
if(unvisitedVertex == -1) {
stack.pop();
} else{
result += vertexList[unvisitedVertex].label + " ";
vertexList[unvisitedVertex].isVisit = true;
stack.push(unvisitedVertex);
}
}
System.out.println(result);
// 将访问信息重置
resetVisit();
}
/**
* 广度优先搜索
*/
public void bfs() {
// 从0号顶点开始
int v = 0;
vertexList[v].isVisit = true;
String result = vertexList[v].label + " ";
MyQueue queue = new MyQueue(100);
queue.insert(v);
while (!queue.isEmpty()) {
v = queue.peek();
// 得到未访问过的邻接点
int unvisitedVertex = getUnvisitedVertex(v);
if(unvisitedVertex == -1) {
queue.remove();
} else {
vertexList[unvisitedVertex].isVisit = true;
result += vertexList[unvisitedVertex].label + " ";
queue.insert(unvisitedVertex);
}
}
System.out.println(result);
// 将访问信息重置
resetVisit();
}
/**
* 获取未访问过的邻接点
*/
public int getUnvisitedVertex(int v) {
for (int i = 0; i < nVertex; i++) {
if(adjMat[v][i] == 1 && vertexList[i].isVisit == false) {
return i;
}
}
return -1;
}
/**
* 将访问信息的属性重置
*/
private void resetVisit() {
for (int i = 0; i < vertexList.length; i++) {
vertexList[i].isVisit = false;
}
}
/**
* 打印图矩阵
*/
public void printGraph() {
System.out.println("********************************************");
System.out.print("\\ \t");
for (int i = 0; i < maxSize; i++) {
System.out.print(vertexList[i].label + "\t");
}
System.out.println();
for (int i = 0; i < maxSize; i++) {
System.out.print(vertexList[i].label + "\t");
for (int j = 0; j < maxSize; j++) {
System.out.print(adjMat[i][j] + "\t");
}
System.out.println();
}
System.out.println("********************************************");
}
}
测试类:
public class Test {
public static void main(String[] args) {
Graph graph = new Graph(10);
graph.addVertex('A');
graph.addVertex('B');
graph.addVertex('C');
graph.addVertex('D');
graph.addVertex('E');
graph.addVertex('F');
graph.addVertex('G');
graph.addVertex('H');
graph.addVertex('I');
graph.addVertex('J');
graph.addEdge(0,1);
graph.addEdge(1,2);
graph.addEdge(2,3);
graph.addEdge(0,4);
graph.addEdge(4,5);
graph.addEdge(5,6);
graph.addEdge(0,7);
graph.addEdge(7,8);
graph.addEdge(8,9);
graph.printGraph();
graph.dfs();
graph.bfs();
}
}
Stack类:
public class MyStack {
//底层实现是一个数组
private int[] arr;
private int top;
/**
* 默认的构造方法
*/
public MyStack() {
arr = new int[10];
top = -1;
}
/**
* 带参数构造方法,参数为数组初始化大小
*/
public MyStack(int maxsize) {
arr = new int[maxsize];
top = -1;
}
/**
* 添加数据
*/
public void push(int value) {
arr[++top] = value;
}
/**
* 移除数据
*/
public int pop() {
return arr[top--];
}
/**
* 查看数据
*/
public int peek() {
return arr[top];
}
/**
* 判断是否为空
*/
public boolean isEmpty() {
return top == -1;
}
/**
* 判断是否满了
*/
public boolean isFull() {
return top == arr.length - 1;
}
}
Queue类:
public class MyQueue {
//底层使用数组
private int[] arr;
//有效数据的大小
private int elements;
//队头
private int front;
//队尾
private int end;
/**
* 默认构造方法
*/
public MyQueue() {
arr = new int[10];
elements = 0;
front = 0;
end = -1;
}
/**
* 带参数的构造方法,参数为数组的大小
*/
public MyQueue(int maxsize) {
arr = new int[maxsize];
elements = 0;
front = 0;
end = -1;
}
/**
* 添加数据,从队尾插入
*/
public void insert(int value) {
arr[++end] = value;
elements++;
}
/**
* 删除数据,从队头删除
*/
public int remove() {
elements--;
return arr[front++];
}
/**
* 查看数据,从队头查看
*/
public int peek() {
return arr[front];
}
/**
* 判断是否为空
*/
public boolean isEmpty() {
return elements == 0;
}
/**
* 判断是否满了
*/
public boolean isFull() {
return elements == arr.length;
}
}