8.12
(a) 三个符号的信源存在几种不同的Huffman编码?
(b) 构造出这些编码.
解答
(a) 两种
(b) [0 10 11] 和 [1 00 01]
8.13
(a)计算下表所示信源的熵.
rk
|
P(rk)
|
Code2
|
l2(rk)
|
0
|
0.19
|
11
|
2
|
1/7
|
0.25
|
01
|
2
|
2/7
|
0.21
|
10
|
2
|
3/7
|
0.16
|
001
|
3
|
4/7
|
0.08
|
0001
|
4
|
5/7
|
0.06
|
00001
|
5
|
6/7
|
0.03
|
000001
|
6
|
1
|
0.02
|
000000
|
6
|
(b)构造Huffman编码, 并与表中的Code2比较.
(c)构造B1编码
(d)构造2bit的二进制偏移编码
(e)将符号分成两组, 构造Huffman偏移编码
(f)计算这些编码的平均字长并与(a)中计算的熵比较.
解答
(a)
(b) Huffman
所构造的Huffman编码和Code2的编码长度一致.
(c) B1编码
|
r1
|
r2
|
r0
|
r3
|
r4
|
r5
|
r6
|
r7
|
Code
|
C0
|
C1
|
C0 C0
|
C0 C1
|
C1 C0
|
C1 C1
|
C0 C0 C0
|
C0 C0 C1
|
(d) 二进制偏移编码
设11为偏移码
|
r1
|
r2
|
r0
|
r3
|
r4
|
r5
|
r6
|
r7
|
Code
|
00
|
01
|
10
|
11 00
|
11 01
|
11 10
|
11 11 00
|
11 11 01
|
(e) Huffman偏移编码
|
Sym.
|
Prob.
|
Huffman Shift
| |
Block 1
|
r1
|
.25
|
00
| |
r2
|
.21
|
10
| ||
r0
|
.19
|
000
| ||
r3
|
.16
|
001
| ||
Block 2
|
r4
|
.08
|
.19
|
11 1
|
r5
|
.06
|
11 00
| ||
r6
|
.03
|
11 010
| ||
r7
|
0.2
|
11 011
|
(f)
熵
|
2.65
|
Huffman
|
2.7
|
B1
|
3.18
|
偏移编码
|
2.8
|
Huffman偏移编码
|
2.7
|