8.17
(a)构造所有的4位格雷码(gray code).
(b)构造一种从gray code转换成二进制码的方法, 并解码0111010100111
解答
(a)
0000
|
0000
|
0001
|
0001
|
0010
|
0011
|
0011
|
0010
|
0100
|
0110
|
0101
|
0111
|
0110
|
0101
|
0111
|
0100
|
1000
|
1100
|
1001
|
1101
|
1010
|
1111
|
1011
|
1110
|
1100
|
1010
|
1101
|
1011
|
1110
|
1001
|
1111
|
1000
|
(b)
由g( i ) = a( i ) ⊕ a( i+1 ) 和g( m-1 ) = a( m-1 )可以推导出 a的表达式为
a( m-1 ) = g( m-1 ), a( i ) = g( i ) ⊕ g( i+1 )
解码
0111010100111
得到
0100111110100
8.18
一个64*64的二值图像, 采用4位的1-D WBS编码. 其中一行的编码得到011001000000100001001000000, 其中0表示黑的象素.
(a) 解码
(b) 构造1D迭代WBS编码, 迭代进行到4位象素长为止.
(c) 用迭代编码构造前面解码出来的值.
解答
(a)
0
|
11001
|
0000000
|
10000
|
10010
|
000000
|
1111
|
1001
|
1111*6
|
0000
|
0010
|
1111*6
|
解码为111110011111111111111111111100000010111111111111111111111111
(b)(c)
11111001111111111111111111111111
|
00000010111111111111111111111111
| ||||||||||||||
1111100111111111
|
1*16
|
0000001011111111
|
1*16
| ||||||||||||
11111001
|
1*8
|
|
|
|
|
00000010
|
1*8
|
|
|
|
| ||||
1111
|
1001
|
|
|
|
|
|
|
0000
|
0010
|
|
|
|
|
|
|
编码
| |||||||||||||||
11110
|
11001
|
0
|
0
|
11110000
|
10010
|
0
|
0
|
编码结果为11110 11001 0 0 11110000 10010 0 0
编码长度为27
-_-!
8.19
(a)为什么在前一行中, e过后的第一个相似的转换被用作相对地址编码中的C’.
(b)能设计一种别的方法吗?
解答
(a) 考虑到图像的连续性, 当前行中的转换有很大可能在上一行中的一个相似转换的附近, 以形成连续的轮廓线. 因此在e后的第一个相似的转换有可能在转换C附近.
(b) 另一种可能的方法是, 寻找当前行C后面的下一个转换, 记做e’. 则寻找e’之前的第一个相似的转换也符合要求.