pipline是Huggingface的一个基本工具,可以理解为一个端到端(end-to-end)的一键调用Transformer模型的工具。它具备了数据预处理、模型处理、模型输出后处理等步骤,可以直接输入原始数据,给出预测结果,十分方便。
1.文本分类
from transformers import pipeline
#文本分类
classifier = pipeline("sentiment-analysis")
result = classifier("I hate you")[0]
print(result)
result = classifier("I love you")[0]
print(result)
{'label': 'NEGATIVE', 'score': 0.9991129040718079}
{'label': 'POSITIVE', 'score': 0.9998656511306763}
2.文本翻译
from transformers import pipeline
#翻译为德语
translator = pipeline("translation_en_to_de")
sentence = "Hugging Face is a technology company based in New York and Paris"
translator(sentence, max_length=40)
[{'translation_text': 'Hugging Face ist ein Technologieunternehmen mit Sitz in New York und Paris.'}]
3.文本生成
from transformers import pipeline
#文本生成
text_generator = pipeline("text-

HuggingFace的pipeline工具简化了使用Transformer模型进行文本分类、翻译、生成、完形填空、阅读理解和命名实体识别等NLP任务的过程。用户可以直接输入原始数据,得到处理后的结果,无需手动处理数据预处理和后处理步骤。
最低0.47元/天 解锁文章
2094





