引言
Bagel平台是一个创新的AI数据管理工具,它将协作与管理带入了机器学习推理数据集的领域,类似于GitHub在代码管理中的角色。本文将介绍Bagel的安装、使用,以及与LangChain结合的基本操作,帮助开发者高效管理和查询推理数据集。
主要内容
安装与设置
Bagel的安装相对简单,只需使用pip命令:
pip install bagelML langchain-community
该命令将安装Bagel和LangChain社区库,后者为多个语言模型提供支持。
创建文本向量存储
Bagel允许通过简单的文本创建向量存储。这是通过from_texts
方法实现的。
from langchain_community.vectorstores import Bagel
texts = ["hello bagel", "hello langchain", "I love salad", "my car", "a dog"]
# 创建一个名为"testing"的集群并添加文本
cluster = Bagel.from_texts(cluster_name="testing", texts=texts)
相似度搜索
一旦集群创建完成,可以使用相似度搜索来查找与查询文本相似的内容:
# 使用API代理服务提高访问稳定性
cluster.similarity_search("bagel", k=3)
此功能返回与查询文本最接近的三个文档。
代码示例
以下是一个完整的使用Bagel和LangChain进行文档处理的示例:
from langchain_community.document_loaders import TextLoader
from langchain_text_splitters import CharacterTextSplitter
from langchain_community.vectorstores import Bagel
# 加载文档
loader = TextLoader("../../how_to/state_of_the_union.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)[:10]
# 创建向量存储集群
cluster = Bagel.from_documents(cluster_name="testing_with_docs", documents=docs)
# 执行相似度搜索
query = "What did the president say about Ketanji Brown Jackson"
docs = cluster.similarity_search(query)
print(docs[0].page_content[:102])
常见问题和解决方案
网络访问问题
由于某些地区的网络限制,访问API时可能会遇到问题。开发者可以考虑使用API代理服务来提高访问的稳定性。
数据集创建与管理
Bagel允许使用元数据进行过滤和管理,使得在多样化数据集中查找信息更加高效。例如:
texts = ["hello bagel", "this is langchain"]
metadatas = [{"source": "notion"}, {"source": "google"}]
cluster = Bagel.from_texts(cluster_name="testing", texts=texts, metadatas=metadatas)
result = cluster.similarity_search_with_score("hello bagel", where={"source": "notion"})
总结和进一步学习资源
Bagel作为一款AI数据管理平台,可以极大简化数据的管理和使用过程。通过与LangChain结合,它能为开发者提供强大的数据操作能力。建议开发者查阅以下资源以获取更深入的理解:
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—