使用PGVector实现LangChain的向量存储:全面指南


引言

在现代信息处理系统中,向量存储是构建高效信息检索和增强生成模型的关键组件。本文将介绍如何利用 PGVectorlangchain-postgres 包,通过 PostgreSQL 实现 LangChain 向量存储,并讨论其设置、使用和常见问题。

主要内容

1. 环境设置

首先,确保安装 langchain_postgres 包,并启动一个包含 pgvector 扩展的 Postgres 容器:

pip install -qU langchain_postgres

启动容器:

docker run --name pgvector-container -e POSTGRES_USER=langchain -e POSTGRES_PASSWORD=langchain -e POSTGRES_DB=langchain -p 6024:5432 -d pgvector/pgvector:pg16

2. 向量存储的初始化

在初始化向量存储时,我们需要提供数据库连接、嵌入模型和其他配置。例如,我们可以使用 OpenAI 的嵌入模型:

from langchain_openai import OpenAIEmbeddings
from langchain_postgres import PGVector

embeddings = OpenAIEmbeddings(model=
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值