引言
在现代信息处理系统中,向量存储是构建高效信息检索和增强生成模型的关键组件。本文将介绍如何利用 PGVector
和 langchain-postgres
包,通过 PostgreSQL 实现 LangChain 向量存储,并讨论其设置、使用和常见问题。
主要内容
1. 环境设置
首先,确保安装 langchain_postgres
包,并启动一个包含 pgvector
扩展的 Postgres 容器:
pip install -qU langchain_postgres
启动容器:
docker run --name pgvector-container -e POSTGRES_USER=langchain -e POSTGRES_PASSWORD=langchain -e POSTGRES_DB=langchain -p 6024:5432 -d pgvector/pgvector:pg16
2. 向量存储的初始化
在初始化向量存储时,我们需要提供数据库连接、嵌入模型和其他配置。例如,我们可以使用 OpenAI 的嵌入模型:
from langchain_openai import OpenAIEmbeddings
from langchain_postgres import PGVector
embeddings = OpenAIEmbeddings(model=