引言
在现代应用中,如何高效地存储和检索信息是一个关键问题。Redis作为一款开源的键值存储解决方案,不仅可以用作缓存和数据库,还能作为向量数据库来处理复杂的查询任务。在这篇文章中,我们将探索如何使用Redis构建一个智能的电影检索系统,并实现自查询功能。本文将提供实用步骤和代码示例,帮助您掌握这种先进的技术。
主要内容
创建Redis向量存储
首先,我们需要创建一个Redis向量存储,并用一些数据来初始化它。我们将使用一组电影的简单概述来演示。
%pip install --upgrade --quiet redis redisvl langchain-openai tiktoken lark
确保安装必要的依赖,包括lark
,因为自查询检索器依赖于它。
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:") # 需要OpenAI API Key
from langchain_community.vectorstores import Redis
from langchain_core.documents import Document
from langchain_openai import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
docs = [
# 示例文档
]
index_schema = {
"tag": [{"name": "genre"}],
"text": [{"name": "director"}],
"numeric": [{"name": "year"}, {"name": "rating"}],
}
vectorstore = Redis.from_documents(
docs,
embeddings,
redis_url="redis://localhost:6379", # 使用API代理服务提高访问稳定性
index_name="movie_reviews",
index_schema=index_schema,
)
实现自查询检索功能
接下来,我们将配置并实例化自查询检索器。
from langchain.chains.query_constructor.base import AttributeInfo
from langchain.retrievers.self_query.base import SelfQueryRetriever
from langchain_openai import OpenAI
metadata_field_info = [
# 元数据字段信息
]
document_content_description = "Brief summary of a movie"
llm = OpenAI(temperature=0)
retriever = SelfQueryRetriever.from_llm(
llm, vectorstore, document_content_description, metadata_field_info, verbose=True
)
代码示例
以下是使用自查询检索器的示例。
# 执行查询
results = retriever.invoke("What are some movies about dinosaurs")
for result in results:
print(result.page_content)
常见问题和解决方案
-
Schema不匹配警告:这通常因为手动设置的schema与自动生成的schema不符。确保你的
index_schema
和生成的schema一致。 -
网络限制:由于某些地区的网络限制,API访问可能会受到影响。建议使用API代理服务来提高访问稳定性。
总结和进一步学习资源
本文介绍了如何在Redis中实现向量存储和自查询检索系统。这只是Redis强大功能的冰山一角。建议阅读以下资源以获取更深入的了解:
参考资料
- Redis Documentation: https://redis.io/documentation
- LangChain for Redis: https://langchain.com/docs/modules/vectorstores/redis
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—