使用Redis构建智能电影检索系统:从向量存储到自查询检索

引言

在现代应用中,如何高效地存储和检索信息是一个关键问题。Redis作为一款开源的键值存储解决方案,不仅可以用作缓存和数据库,还能作为向量数据库来处理复杂的查询任务。在这篇文章中,我们将探索如何使用Redis构建一个智能的电影检索系统,并实现自查询功能。本文将提供实用步骤和代码示例,帮助您掌握这种先进的技术。

主要内容

创建Redis向量存储

首先,我们需要创建一个Redis向量存储,并用一些数据来初始化它。我们将使用一组电影的简单概述来演示。

%pip install --upgrade --quiet redis redisvl langchain-openai tiktoken lark

确保安装必要的依赖,包括lark,因为自查询检索器依赖于它。

import getpass
import os

os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")  # 需要OpenAI API Key

from langchain_community.vectorstores import Redis
from langchain_core.documents import Document
from langchain_openai import OpenAIEmbeddings

embeddings = OpenAIEmbeddings()

docs = [
    # 示例文档
]

index_schema = {
    "tag": [{"name": "genre"}],
    "text": [{"name": "director"}],
    "numeric": [{"name": "year"}, {"name": "rating"}],
}

vectorstore = Redis.from_documents(
    docs,
    embeddings,
    redis_url="redis://localhost:6379",  # 使用API代理服务提高访问稳定性
    index_name="movie_reviews",
    index_schema=index_schema,
)

实现自查询检索功能

接下来,我们将配置并实例化自查询检索器。

from langchain.chains.query_constructor.base import AttributeInfo
from langchain.retrievers.self_query.base import SelfQueryRetriever
from langchain_openai import OpenAI

metadata_field_info = [
    # 元数据字段信息
]

document_content_description = "Brief summary of a movie"

llm = OpenAI(temperature=0)
retriever = SelfQueryRetriever.from_llm(
    llm, vectorstore, document_content_description, metadata_field_info, verbose=True
)

代码示例

以下是使用自查询检索器的示例。

# 执行查询
results = retriever.invoke("What are some movies about dinosaurs")
for result in results:
    print(result.page_content)

常见问题和解决方案

  1. Schema不匹配警告:这通常因为手动设置的schema与自动生成的schema不符。确保你的index_schema和生成的schema一致。

  2. 网络限制:由于某些地区的网络限制,API访问可能会受到影响。建议使用API代理服务来提高访问稳定性。

总结和进一步学习资源

本文介绍了如何在Redis中实现向量存储和自查询检索系统。这只是Redis强大功能的冰山一角。建议阅读以下资源以获取更深入的了解:

参考资料

  • Redis Documentation: https://redis.io/documentation
  • LangChain for Redis: https://langchain.com/docs/modules/vectorstores/redis

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值