泛克里金方法的实际应用——小试牛刀

本文介绍了作者使用C#实现泛克里金方法的过程,详细讲解了从数据处理到矩阵运算的步骤,包括计算距离矩阵、协方差函数和矩阵赋值。内容适合对地统计学和C#编程感兴趣的读者,同时也提醒注意泛克里金方法适用的条件。
摘要由CSDN通过智能技术生成

        首先,特别感谢我们的地统计学老师王培法老师,南邮的小黄同学、同班的小陈同学以及CSDN对本次项目完成的大力支持~

        题主是新手,在学习克里金系列方法的时候,发现大多数的克里金方法都是通过matlab来实现的,网上很少有用C#来进行实现,所以题主突发奇想,使用C#将该方法实现。

        因为是小白的缘故,许多方法可能非常“笨”,希望各位大神斧正。

        前排警告⚠⚠⚠⚠⚠⚠⚠⚠!!!!!

        

        C#的实现非常复杂,慎入!

        本次内容的数据来自于《地统计学概论》

        基本数据如下图:

       

 

 其中0号点是待估计的点,其余点是控制点。

 

        好了,开始正文,直接上代码!

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;

namespace 泛克吕格方法
{
    public partial class Form1 : Form
    {
        PointF[] PF = new PointF[6];
        double[,] f = new double[5, 2];
    public Form1()
        {
            InitializeComponent();
        }
    


}

以上是一些基本代码,没啥好说的,PF是以float为内容的点数组,f是等会要用到的5*2的矩阵,这个矩阵是构成泛克里金方程组的一部分。

public class Matrix
        {
            double[,] X;
            //矩阵的乘法
            public double[,] Matrix_Muti(double [,]p ,double [,]q)
            {
                int m = p.GetLength(0);//获取p矩阵的行数
                int n = q.GetLength(1);//获取q矩阵的列数
                int t = q.GetLength(0);
                double[,] T = new double[m,n];
                for (int i = 0; i < m; i++)
                {
                    for (int j = 0; j < n; j++)
                    {
                        for (int k = 0; k < t; k++)
                        {
                            T[i, j] += p[i, k] * q[k,j];
                        }
                    }
                }
                return T;
            }


            //二阶矩阵的转置
            public double[,] Maxtrix_TransForm_2(double[,] p)
            {
                double[,] Temp = p;
                
                int m = p.GetLength(0);//得到p矩阵的行
                int n = p.GetLength(1);//得到p矩阵的列
                double[,] Result = new double[n, m];
                for (int i = 0; i < n; i++)
                {
                    for (int j = 0; j < m; j++)
                    {
                        Result[i,j] = Temp[j, i];
                    }
                }
                return
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值