题目描述
把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。
输入一个非递减排序的数组的一个旋转,输出旋转数组的最小元素。
例如数组{3,4,5,1,2}为{1,2,3,4,5}的一个旋转,该数组的最小值为1。
NOTE:给出的所有元素都大于0,若数组大小为0,请返回0。、
知识点考察:二分查找;思维的全面性,考虑各种特例;新概念的理解与学习。
方法一:最直观的方法就是不考虑旋转数组,直接用O(n)遍历数组,找到最小值。虽然可行,但是有点扯。稍微记录下。
class Solution {
public:
int minNumberInRotateArray(vector<int> rotateArray) {
if (rotateArray.size() == 0)
return 0;
if (rotateArray.size() == 1)
return rotateArray[0];
int max = rotateArray[0];
for (int i = 1;i < rotateArray.size(); i++)
{
if (rotateArray[i] >= max)
max = rotateArray[i];
if (rotateArray[i] < max)
return rotateArray[i];
}
}
};
方法二:二分查找 旋转之后,数组可以分为两个非递减的数组,首位下标交替进行,因此二分查找时间复杂度较低。
class Solution {
public:
int minNumberInRotateArray(vector<int> rotateArray) {
if (rotateArray.size() == 0)
{
return 0;
}
if (rotateArray.size() == 1)
{
return rotateArray[0];
}
int index1 = 0;
int index2 = rotateArray.size() - 1;
int indexMid = index1;
while (rotateArray[index1] >= rotateArray[index2])
{
if (index2 - index1 == 1)//间隔为1,则结束循环。后一个元素为递增起始。
{
indexMid = index2;
break;
}
indexMid = (index1 + index2) / 2;
if ((rotateArray[index1] == rotateArray[index2]) //特殊情况,出现无法分割为两部分的。
&& (rotateArray[index1] == rotateArray[indexMid]))
return MinInOrder(rotateArray, index1, index2);
if (rotateArray[indexMid] >= rotateArray[index1]) //分割数组
index1 = indexMid;
else if (rotateArray[indexMid] <= rotateArray[index2]) //两种情况
index2 = indexMid;
}
return rotateArray[indexMid];
}
int MinInOrder(vector<int> array, int index1, int index2) //顺序查找算法
{
int result = array[index1];
for (int i = index1 + 1; i <= index2; i++)
{
if (result > array[i])
result = array[i];
}
return result;
}
};