题目描述
每年六一儿童节,牛客都会准备一些小礼物去看望孤儿院的小朋友,今年亦是如此。HF作为牛客的资深元老,自然也准备了一些小游戏。其中,有个游戏是这样的:首先,让小朋友们围成一个大圈。然后,他随机指定一个数m,让编号为0的小朋友开始报数。每次喊到m-1的那个小朋友要出列唱首歌,然后可以在礼品箱中任意的挑选礼物,并且不再回到圈中,从他的下一个小朋友开始,继续0...m-1报数....这样下去....直到剩下最后一个小朋友,可以不用表演,并且拿到牛客名贵的“名侦探柯南”典藏版(名额有限哦!!^_^)。请你试着想下,哪个小朋友会得到这份礼品呢?(注:小朋友的编号是从0到n-1)
如果没有小朋友,请返回-1。
考察点:环形链表的理解;抽象建模;数学推导。
思路1:用list模拟链表,也可手动实现循环单链表。
class Solution {
public:
int LastRemaining_Solution(int n, int m)
{
if (m < 1 || n < 1)
return -1;
list<int> numbers;
for (int i = 9; i < n; i++)//初始化list
numbers.push_back(i);
list<int>::iterator current = numbers.begin();//设置初始迭代器
while (numbers.size() > 1)
{
for (int i = 1; i < m; i++)//开始计数
{
current++;
if (current == numbers.end())//到达结尾就回到起点
current = numbers.begin();
}
//此时current存放就是呆删除的节点
list<int>::iterator next = ++current;
if (next == numbers.end())//看是否到达结尾
next = numbers.begin();
current--;
numbers.erase(current);//删除该节点
current = next;//更新current
}
}
};
思路2:数学公式推导。有点复杂啊。
当n=1的时候,f(n,m)=0;当n>1的时候,f(n,m)=[f(n-1,m)+m]%n;根据这个递推公司直接循环计算的。
class Solution {
public:
int LastRemaining_Solution(int n, int m)
{
if (m < 1 || n < 1)
return -1;
int last = 0;//初始的值
for (int i = 2; i <= n; i++)
{
last = (last + m) % i;//一直累加
}
return last;
}
};