Description
用n个长度为L[i]的圆弧随机覆盖长度为c的圆环,问圆环被完全覆盖的概率
n<=6,c<=50
Solution
我还以为是一道niubi积分题_(:з」∠)_
考虑把圆环在L最大的圆弧的左端点处断开,我们可以把环上的问题变成链上的问题
然后,每个圆弧的左端点X[i]=P[i]+R[i],其中
P
[
i
]
∈
[
0
,
C
)
,
R
[
i
]
∈
(
0
,
1
)
P[i]\in[0,C),R[i]\in(0,1)
P[i]∈[0,C),R[i]∈(0,1)
容易知道我们只关心R[i]的大小关系,所以我们可以(n-1)!枚举这个大小关系
那么问题就变为离散的,直接状压Dp算方案数即可
Code
#include <cstdio>
#include <cstring>
#include <algorithm>
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
using namespace std;
typedef double db;
typedef long long ll;
const int N=55;
int n,c,l[N],p[N];
ll f[N*6][35];
ll Dp() {
fo(i,0,n*c) fo(s,0,(1<<n-1)-1) f[i][s]=0;
f[n*l[n]][0]=1;
fo(i,0,n*c-1) {
if (!(i%n)) continue;
int x=p[i%n];
fo(s,0,(1<<n-1)-1) {
if (s&(1<<x-1)) continue;
fo(j,i,n*c) f[min(n*c,max(j,i+n*l[x]))][s|(1<<x-1)]+=f[j][s];
}
}
return f[n*c][(1<<n-1)-1];
}
int main() {
scanf("%d%d",&n,&c);
fo(i,1,n) scanf("%d",&l[i]);
sort(l+1,l+n+1);
fo(i,1,n-1) p[i]=i;
db ans=0;
do {ans+=Dp();} while (next_permutation(p+1,p+n));
fo(i,1,n-1) ans/=i*c*1.0;
printf("%.12lf\n",ans);
return 0;
}