[AGC020F]Arcs on a Circle

Description

用n个长度为L[i]的圆弧随机覆盖长度为c的圆环,问圆环被完全覆盖的概率
n<=6,c<=50

Solution

我还以为是一道niubi积分题_(:з」∠)_
考虑把圆环在L最大的圆弧的左端点处断开,我们可以把环上的问题变成链上的问题
然后,每个圆弧的左端点X[i]=P[i]+R[i],其中 P [ i ] ∈ [ 0 , C ) , R [ i ] ∈ ( 0 , 1 ) P[i]\in[0,C),R[i]\in(0,1) P[i][0,C),R[i](0,1)
容易知道我们只关心R[i]的大小关系,所以我们可以(n-1)!枚举这个大小关系
那么问题就变为离散的,直接状压Dp算方案数即可

Code

#include <cstdio>
#include <cstring>
#include <algorithm>
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
using namespace std;

typedef double db;
typedef long long ll;

const int N=55;

int n,c,l[N],p[N];
ll f[N*6][35];

ll Dp() {
	fo(i,0,n*c) fo(s,0,(1<<n-1)-1) f[i][s]=0;
	f[n*l[n]][0]=1;
	fo(i,0,n*c-1) {
		if (!(i%n)) continue;
		int x=p[i%n];
		fo(s,0,(1<<n-1)-1) {
			if (s&(1<<x-1)) continue;
			fo(j,i,n*c) f[min(n*c,max(j,i+n*l[x]))][s|(1<<x-1)]+=f[j][s]; 
		}
	}
	return f[n*c][(1<<n-1)-1];
}

int main() {
	scanf("%d%d",&n,&c);
	fo(i,1,n) scanf("%d",&l[i]);
	sort(l+1,l+n+1);
	fo(i,1,n-1) p[i]=i;
	db ans=0;
	do {ans+=Dp();} while (next_permutation(p+1,p+n));
	fo(i,1,n-1) ans/=i*c*1.0;
	printf("%.12lf\n",ans);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值