我们在处理数据的时候,经常需要检查数据的质量,也需要知道出问题的数据在哪个位置。我找了很久,也尝试了很多办法,都没能找到一种非常直接的函数,本文所要介绍的是一种我认为比较方便的方法:np.where()
我举个例子
import pandas as pd
import numpy as np
df = pd.DataFrame(np.arange(12).reshape(4,3), index=list('abcd'), columns=list('xyz'))
In [14]:df
Out[14]:
x y z
a 0 1 2
b 3 4 5
c 6 7 8
d 9 10 11
比如你想找到 5 的位置,你想知道它在第几行,第几列
In [16]: np.where(df==5)
Out[16]: (array([1], dtype=int64), array([2], dtype=int64))
可以看到结果返回了一个元祖tuple,里面有两个元素,都是np.ndarray类型的,第一个是行号,第二个是指明列的位置,所以5 是在第2行,第3列
如果我们想检查数据里面掺杂的缺失值NaN的位置的,同样可以用此方法。
# 首先我们将df的第一列变成NaN
df.x = np.nan
df
Out[18]:
x y z
a NaN 1 2
b NaN 4 5
c NaN 7 8
d NaN 10 11
# 然后查查NaN的位置,在写这篇blog的时候我也遇到了一个奇怪的事,上面我用np.nan赋值后,然后用df == np.nan判断,结果很奇怪
In [28]: df == np.nan
Out[28]:
x y z
a False False False
b False False False
c False False False
d False False False
# 但是用 numpy 的另一个函数 np.isnan, 却可以判断出nan,具体原因还需要再研究研究
np.isnan(df)
Out[25]:
x y z
a True False False
b True False False
c True False False
d True False False
# 因此接我们最初的目的,找出NaN的位置
np.where(np.isnan(df))
Out[32]: (array([0, 1, 2, 3], dtype=int64), array([0, 0, 0, 0], dtype=int64))
np.where(np.isnan(df))[0] # 选出tuple里面的第一个元素,也就是行号
Out[33]: array([0, 1, 2, 3], dtype=int64)
但如果你觉得只知道行号,列号不能满足你的需求,还想知道元素的索引名称
# 我们现在的df是这个样子的
df
Out[34]:
x y z
a NaN 1 2
b NaN 4 5
c NaN 7 8
d NaN 10 11
# 加入你想知道 NaN 所在的索引,列名,只需要在前面加上 df.index, df.columns 即可
In [35]: df.index[np.where(np.isnan(df))[0]]
Out[35]: Index(['a', 'b', 'c', 'd'], dtype='object')
# df.index 是获取行名称,对应后面的[0]取行号
In [36]: df.columns[np.where(np.isnan(df))[1]]
Out[36]: Index(['x', 'x', 'x', 'x'], dtype='object')
# df.columns 是获取列名称,对应后面的[1]取列号
Over