(em…有几个学弟最近问了这题,这里写一下题解吧,另外吐槽一下,我博客里写的很多dp标的都是简单dp,这里不是我觉得这些dpj简单,只是我最初学dp的时候大部分除了背包,数位dp等比较特殊的dp外都记成简单dp了,这里的简单是basic,不是easy)
题解:dp(i,j)表示已经闯到了第i关,且当前已经消耗的体力为j时的最大价值。
那么显然由题意根据上一步是从消耗a体力还是从消耗b体力转移过来的进行集合划分,即:
1.若从a转移,则dp(i,j)=dp(i-1,j-a)+b;
2.若从b转移,则dp(i,j)=dp(i-1,j-c)+d;
3.若此时结束,则当前答案就是dp(i,j);
另外注意:
1.这里不能写成dp(i,j)=max(dp(i,j),dp(i-1,j-a)+b)之类的,因为这样代表我可以不选当前状态,但是这题是一路闯关过来的,不允许之前有不选的这种情况。
2.为了保证是一路闯关,我们所有的状态必须是从一个合法状态转移过来的,所以要把所有的非法状态初始化为-1
其实这里状态转移到这里就没了,我们枚举一下i和j然后扫一遍上面状态转移就行了。但是比赛的时候我这样第一次交发现爆空间了,注意到这里都是每一个i位置的状态都是从上一个i-1位置的状态转移过来的,这样的情况我们都可以采用滚动数组做空间优化(第一维全部&1就行了),这样dp[N][N]就可以写成dp[2][N]了。
(关于滚动数组的原理这里就不细说了,其他博客有更详细的解释)。
AC代码:
#include <bits/stdc++.h>
using namespace std;
const int N=6010;
int n,m;
int a[N],b[N],c[N],d[N];
int dp[2][N];
void solve(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++) scanf("%d%d%d%d",&a[i],&b[i],&c[i],&d[i]);
for(int j=0;j<=m;j++)
dp[0][j]=dp[1][j]=-1;
dp[0][0]=0;
int res=0;
for(int i=1;i<=n;i++){
for(int j=0;j<=m;j++){
int k=-1;
if(j>=a[i]&&dp[i-1&1][j-a[i]]>=0) k=dp[i-1&1][j-a[i]]+b[i];
if(j>=c[i]&&dp[i-1&1][j-c[i]]>=0) k=max(k,dp[i-1&1][j-c[i]]+d[i]);
dp[i&1][j]=k;
res=max(res,dp[i&1][j]);
}
}
printf("%d\n",res);
}
main(){
int T;
scanf("%d",&T);
while(T--)solve();
}