问题 F: 汉诺塔问题
时间限制: 1 Sec 内存限制: 128 MB提交: 28 解决: 13
[ 提交][ 状态][ 讨论版]
题目描述
约19世纪末,在欧州的商店中出售一种智力玩具,在一块铜板上有三根杆,最左边的杆上自上而下、由小到大顺序串着由64个圆盘构成的塔。目的是将最左边杆上的盘全部移到中间的杆上,条件是一次只能移动一个盘,且不允许大盘放在小盘的上面。
这是一个著名的问题,几乎所有的教材上都有这个问题。由于条件是一次只能移动一个盘,且不允许大盘放在小盘上面,所以64个盘的移动次数是:18,446,744,073,709,551,615
这是一个天文数字,若每一微秒可能计算(并不输出)一次移动,那么也需要几乎一百万年。我们仅能找出问题的解决方法并解决较小N值时的汉诺塔,但很难用计算机解决64层的汉诺塔。
假定圆盘从小到大编号为1, 2, ...
输入
输入为一个整数(小于20)后面跟三个单字符字符串。
整数为盘子的数目,后三个字符表示三个杆子的编号。
输出
输出每一步移动盘子的记录。一次移动一行。
每次移动的记录为例如 a->3->b 的形式,即把编号为3的盘子从a杆移至b杆。
样例输入
2 a b c
样例输出
a->1->c
a->2->b
c->1->b
#include<bits/stdc++.h>
int
mod=1e9+7;
using
namespace
std;
void
display(
int
n,
char
a,
char
b)
{
cout<<a<<
"->"
<<n<<
"->"
<<b<<endl;
}
void
dfs(
int
n,
char
a,
char
c,
char
b)//将n个盘子从a经过c移到b;
{
if
(n==1)
display(n,a,b);
else
{
dfs(n-1,a,b,c);//将i-1个盘子从a经过b移到c
display(n,a,b);将第i个盘子从a移到b;
dfs(n-1,c,a,b);将i-1个盘子从c经过a移到b
}
}
int
main()
{
int
n;
char
a,b,c;
cin>>n>>a>>b>>c;
dfs(n,a,c,b);
return
0;
}