HDU 1024 Max Sum Plus Plus

Max Sum Plus Plus

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 33207    Accepted Submission(s): 11817


Problem Description
Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.

Given a consecutive number sequence S 1, S 2, S 3, S 4 ... S x, ... S n (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ S x ≤ 32767). We define a function sum(i, j) = S i + ... + S j (1 ≤ i ≤ j ≤ n).

Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i 1, j 1) + sum(i 2, j 2) + sum(i 3, j 3) + ... + sum(i m, j m) maximal (i x ≤ i y ≤ j x or i x ≤ j y ≤ j x is not allowed).

But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(i x, j x)(1 ≤ x ≤ m) instead. ^_^
 

Input
Each test case will begin with two integers m and n, followed by n integers S 1, S 2, S 3 ... S n.
Process to the end of file.
 

Output
Output the maximal summation described above in one line.
 

Sample Input
  
  
1 3 1 2 3 2 6 -1 4 -2 3 -2 3
 

Sample Output
  
  
6 8
Hint
Huge input, scanf and dynamic programming is recommended.
dp[i][j]表示把前j个数分成i段,必须以第j个数为末尾的最大和
那么有两种可能:
1.dp[i][j]=dp[i][j-1]+a[j],即前j-1个数已经分成
i段,在j-1之后接上j。
2.dp[i][j]=MAXN[i-1][j-1]+a[j],MAXN[i-1][j-1]表示将前j-1个数
分成i-1段所能得到的最大和。注意这里不能用dp[i-1][j-1]+a[j].
因为此条件下a[j]不与前一个元素相接,而dp[i-1][j-1]表示的是
以第j-1个数为结尾的分为i-1段的最大值,因此这里用MAXN[i-1][j-1];
而MAXN[i][j]即是dp[i][i]~dp[i][j]中的最大值。
代码:

#include<bits/stdc++.h>
int a[1000002],dp[1000002],MAXN[100002];//为了节省内存,这里全部转
                                        //化成一维数组求解
using namespace std;
int main()
{
    int n,m;
    while(~scanf("%d%d",&m,&n))
    {
        memset(dp,0,sizeof(dp));
        memset(MAXN,0,sizeof(MAXN));
        int i,j;
        for(i=1;i<=n;i++)
            scanf("%d",&a[i]);
        int mm;
        for(i=1;i<=m;i++)
        {
            mm=-1e9;
            for(j=i;j<=n;j++)
            {
                
                dp[j]=max(dp[j-1]+a[j],MAXN[j-1]+a[j]);
                MAXN[j-1]=mm;//这里的mm是上一次循环得到的,即
                             //前j-1的最大值,赋给MAXN给下一曾
                             //i的循环使用。
                mm=max(mm,dp[j]);//更新mm给下一次使用。
                //本来我是用的滚动数组,后来看了大神的博客眼前一亮
                //还有这般奇妙的解法。
            }
        }
        printf("%d\n",mm);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值