最大公约数和最小公倍数问题

问题 G: 最大公约数和最小公倍数问题

时间限制: 1 Sec   内存限制: 125 MB
提交: 59   解决: 24
[ 提交][ 状态][ 讨论版]

题目描述

输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P,Q的个数。

条件:

1. P,A是正整数;

2. 要求P,Q以x0为最大公约数,以y0为最小公倍数。

试求:

满足条件的所有可能的两个正整数的个数。


输入

每个测试文件只包含一组测试数据,每组两个正整数x0和y0(2<=x0<100000,2<=y0<=1000000)。


输出

对于每组输入数据,输出满足条件的所有可能的两个正整数的个数。

下面是对样例数据的说明:

输入3 60

此时的P Q分别为:

    3     60
    15   12
    12   15
    60   3

所以,满足条件的所有可能的两个正整数的个数共4种。


样例输入

3 60

样例输出

4
题解:
设i,j是满足条件的一组解,则一定满足x<=i,j<=y
另有gcd(i,j)=x,i*j/gcd=y;遍历一遍i,判断相应的j是否满足条件即可。

代码:

#include<cstdio>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<map>
using namespace std;
#define ll long long
int gcd(int a,int b)
{
	if(a<b)swap(a,b);
	return b==0?a:gcd(b,a%b);
}
int main()
{
	int x,y;scanf("%d%d",&x,&y);
	int ans=0;
	for(int i=x;i<=y;i++)
	{
		if(i%x==0&&y%i==0)
		{
			if(gcd(i,x*y/i)==x)ans++;
		}
	}
	printf("%d\n",ans);
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值