问题 G: 最大公约数和最小公倍数问题
时间限制: 1 Sec 内存限制: 125 MB提交: 59 解决: 24
[ 提交][ 状态][ 讨论版]
题目描述
输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P,Q的个数。
条件:
1. P,A是正整数;
2. 要求P,Q以x0为最大公约数,以y0为最小公倍数。
试求:
满足条件的所有可能的两个正整数的个数。
输入
每个测试文件只包含一组测试数据,每组两个正整数x0和y0(2<=x0<100000,2<=y0<=1000000)。
输出
对于每组输入数据,输出满足条件的所有可能的两个正整数的个数。
下面是对样例数据的说明:
输入3 60
此时的P Q分别为:
3 60
15 12
12 15
60 3
所以,满足条件的所有可能的两个正整数的个数共4种。
样例输入
3 60
样例输出
4
题解:
设i,j是满足条件的一组解,则一定满足x<=i,j<=y
另有gcd(i,j)=x,i*j/gcd=y;遍历一遍i,判断相应的j是否满足条件即可。
代码:
#include<cstdio>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<map>
using namespace std;
#define ll long long
int gcd(int a,int b)
{
if(a<b)swap(a,b);
return b==0?a:gcd(b,a%b);
}
int main()
{
int x,y;scanf("%d%d",&x,&y);
int ans=0;
for(int i=x;i<=y;i++)
{
if(i%x==0&&y%i==0)
{
if(gcd(i,x*y/i)==x)ans++;
}
}
printf("%d\n",ans);
return 0;
}