【机器学习】算法
自然语言处理-nlp
熟能生巧
展开
-
递归例子
刚接触递归的同学,可能难以理解递归,难以理解的点可能很多,例如:1.函数为什么可以在自己的内部又调用自己呢?2.既然可以自己调用自己,那么递归运行过程中一定回有很多层相互嵌套,到底什么时候不再嵌套呢?3.递归运行过程中,相互嵌套的多层之间会有参数传递,多层之间是否会相互影响?递归两个要素1.递归边界2.递归的逻辑——递归"公式"递归的过程一定有参数的变化,并且参数的变化,和递归边界有关系.在难度较...转载 2018-05-22 18:17:00 · 292 阅读 · 0 评论 -
svm原理详解,看完就懂(六):松弛变量part1
现在我们已经把一个本来线性不可分的文本分类问题,通过映射到高维空间而变成了线性可分的。就像下图这样: 圆形和方形的点各有成千上万个(毕竟,这就是我们训练集中文档的数量嘛,当然很大了)。现在想象我们有另一个训练集,只比原先这个训练集多了一篇文章,映射到高维空间以后(当然,也使用了相同的核函数),也就多了一个样本点,但是这个样本的位置是这样的: 就是图中黄色那个点,它是方形的,...转载 2019-02-15 17:17:13 · 2803 阅读 · 0 评论 -
svm原理详解,看完就懂(五):为何需要核函数
生存?还是毁灭?——哈姆雷特可分?还是不可分?——支持向量机之前一直在讨论的线性分类器,器如其名(汗,这是什么说法啊),只能对线性可分的样本做处理。如果提供的样本线性不可分,结果很简单,线性分类器的求解程序会无限循环,永远也解不出来。这必然使得它的适用范围大大缩小,而它的很多优点我们实在不原意放弃,怎么办呢?是否有某种方法,让线性不可分的数据变得线性可分呢?有!其思想说来也简单,来用一...转载 2019-02-15 17:15:36 · 2869 阅读 · 0 评论 -
svm原理详解,看完就懂(四):线性分类器求解part3转化
让我再一次比较完整的重复一下我们要解决的问题:我们有属于两个类别的样本点(并不限定这些点在二维空间中)若干,如图,圆形的样本点定为正样本(连带着,我们可以把正样本所属的类叫做正类),方形的点定为负例。我们想求得这样一个线性函数(在n维空间中的线性函数):g(x)=wx+b使得所有属于正类的点x+代入以后有g(x+)≥1,而所有属于负类的点x-代入后有g(x-)≤-1(之所以总跟1比...转载 2019-02-15 17:13:04 · 434 阅读 · 0 评论 -
svm原理详解,看完就懂(三):线性分类器求解part2
从最一般的定义上说,一个求最小值的问题就是一个优化问题(也叫寻优问题,更文绉绉的叫法是规划——Programming),它同样由两部分组成,目标函数和约束条件,可以用下面的式子表示:(式1)约束条件用函数c来表示,就是constrain的意思啦。你可以看出一共有p+q个约束条件,其中p个是不等式约束,q个等式约束。关于这个式子可以这样来理解:式中的x是自变量,但不限定它的维数必须为1(...转载 2019-02-15 17:11:51 · 584 阅读 · 0 评论 -
svm原理详解,看完就懂(二):线性分类器的求解part1
上节说到我们有了一个线性分类函数,也有了判断解优劣的标准——即有了优化的目标,这个目标就是最大化几何间隔,但是看过一些关于SVM的论文的人一定记得什么优化的目标是要最小化||w||这样的说法,这是怎么回事呢?回头再看看我们对间隔和几何间隔的定义:间隔:δ=y(wx+b)=|g(x)|几何间隔:可以看出δ=||w||δ几何。注意到几何间隔与||w||是成反比的,因此最大化几何间隔与最小化...转载 2019-02-15 17:08:59 · 703 阅读 · 0 评论 -
svm原理详解,看完就懂(一)
(一)SVM的八股简介支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中[10]。支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度,Accur...转载 2019-02-15 17:06:39 · 29792 阅读 · 2 评论 -
销售预测
这里有两个问题,第一个问题,预测是怎么做出来的?第二个问题是:对于同一件事情它是预测出不同的结果,什么结果是好与坏?第一个问题是怎么预测的问题,第二个问题是预测的效果好与坏的问题。这就引出了我的主题,《机器学习对销售预测的研究》。机器学习是常用的日常分析的方法,另一方面机器学习在海量数据中挖掘其中的规律效果非常好。首先,说说,销售预测的现状和痛点。销售只是一个商业问题,要做的是满足用户的需...转载 2019-01-11 16:56:51 · 15931 阅读 · 3 评论 -
线性回归和逻辑回归的区别
回归问题的条件/前提:1) 收集的数据2) 假设的模型,即一个函数,这个函数里含有未知的参数,通过学习,可以估计出参数。然后利用这个模型去预测/分类新的数据。1. 线性回归假设 特征 和 结果 都满足线性。即不大于一次方。这个是针对 收集的数据而言。收集的数据中,每一个分量,就可以看做一个特征数据。每个特征至少对应一个未知的参数。这样就形成了一个线性模型函数,向量表示形式:这个...转载 2018-10-30 10:36:02 · 54671 阅读 · 3 评论 -
机器学习中分类与回归的解决与区别
机器学习可以解决很多问题,其中最为重要的两个是 回归与分类。 这两个问题怎么解决, 它们之间又有什么区别呢? 以下举几个简单的例子,以给大家一个概念1. 线性回归回归分析常用于分析两个变量X和Y 之间的关系。 比如 X=房子大小 和 Y=房价 之间的关系, X=(公园人流量,公园门票票价) 与 Y=(公园收入) 之间的关系等等。那么你的数据点在图上可以这么看现在你想找到 房子大...转载 2018-08-31 15:06:15 · 2343 阅读 · 0 评论 -
svm原理详解,看完就懂(七):松弛变量part2
接下来要说的东西其实不是松弛变量本身,但由于是为了使用松弛变量才引入的,因此放在这里也算合适,那就是惩罚因子C。回头看一眼引入了松弛变量以后的优化问题:注意其中C的位置,也可以回想一下C所起的作用(表征你有多么重视离群点,C越大越重视,越不想丢掉它们)。这个式子是以前做SVM的人写的,大家也就这么用,但没有任何规定说必须对所有的松弛变量都使用同一个惩罚因子,我们完全可以给每一个离群点都使用...转载 2019-02-15 17:18:36 · 2510 阅读 · 0 评论