什么是MapReduce
MapReduce是Google提出的一个软件架构,用于大规模数据集(大于1TB)的并行运算。概念“Map(映射)”和“Reduce(归纳)”
映射和归纳
- 映射
一个映射函数就是对一些独立元素组成的概念上的列表(例如,一个测试成绩的列表)的每一个元素进行指定的操作(比如,有人发现所有学生的成绩都被高估了一分,他可以定义一个“减一”的映射函数,用来修正这个错误。)。事实上,每个元素都是被独立操作的,而原始列表没有被更改,因为这里创建了一个新的列表来保存新的答案。这就是说,Map操作是可以高度并行的,这对高性能要求的应用以及并行计算领域的需求非常有用。 - 归纳
归纳操作指的是对一个列表的元素进行适当的合并(继续看前面的例子,如果有人想知道班级的平均分该怎么做?他可以定义一个归纳函数,通过让列表中的奇数(odd)或偶数(even)元素跟自己的相邻的元素相加的方式把列表减半,如此递归运算直到列表只剩下一个元素,然后用这个元素除以人数,就得到了平均分)。虽然他不如映射函数那么并行,但是因为归纳总是有一个简单的答案,大规模的运算相对独立,所以归纳函数在高度并行环境下也很有用。
可靠性
MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。如果一个节点保持沉默超过一个预设的时间间隔,主节点(类同Google档案系统中的主服务器)记录下这个节点状态为死亡,并把分配给这个节点的数据发到别的节点。
参考此处
Map-Reduce:
发扬光大从Google的论文-MapReduce: Simplified data processing on large clusters开始的。Map-Reduce将程序的运行分成了Map和Reduce两个步骤,Map是一个读取、处理原始数据的过程,而Reduce是根据Map处理的内容,进行整合、再处理。Reduce可以认为又是一个Map,为下一级的Reduce过程作准备,这样数据的处理可以按这种方式进行迭代。
Map-Reduce的重点在下面的几处:
1)运行程序的方式,Map-Reduce一般是在以GFS(Google文件系统),或者HDFS等类似的系统上面进行的,这个系统一般有诸多的如磁盘负载平衡,数据冗余(replica),数据迁移(比如说集群中的某台硬盘坏了,这个硬盘里面的数据会用某种方式备份到其他的硬盘中去,而且保证每块硬盘的数据量都大致平衡)。不过这里先不谈数据的存储,主要谈谈任务的调度。
一般像这样的集群里面都有一百台以上的电脑,按每个电脑8个核计算,至少会有几百上千个CPU的资源。在运行每一个Map-Reduce的时候,用户会先填写需要多少的资源(CPU与内存),然后集群的负责人(可能被称为JobMaster),会去查看当前集群中的计算资源情况,看看能否成功的运行这个作业。如果不行的话,会排队。举一个Map-Reduce的例子:
对于一个很大的文件(由一堆的浮点数组成的),计算这个文件中Top1000的数是什么。那么程序的运行可能是下面的过程。
a. 先在N个CPU(可能在不同的电脑中的)上运行程序,每个CPU会负责数据的一部分,计算出Top1000的数值,将结果写入一个文件(共N份数据)
b. 在M = N/16个CPU上运行程序,每个CPU会负责上面步骤的16个结果文件,计算出这些文件中Top1000的数值,然后将结果写入一个文件(共N / 16份数据)
c. 在O = M/16个CPU上运行程序,同样每个CPU负责上面的16个结果文件。(共N / 256份数据)
..
按照这种方式迭代,直到求出真正的Top1000数值。
所以说,Map-Reduce的数据按每次迭代,是一个减少的过程,如果数据处理的时候有这样的特性,那就非常适合于用Map-Reduce去解决。
MapReduce的 "HelloWorld"
暂时还么找到....
贴个教程链接