**
当我们遇到了要快速判断一个元素是否出现集合里的时候,就要考虑哈希法
**
1、 哈希表理论基础
哈希函数hashcode是通过特定编码方式,可以将其他数据格式转化为不同的数值,可以将信息映射为哈希表的索引数字了。
如果hashCode得到的数值大于 哈希表的大小了,也就是大于tableSize了,此时为了保证映射出来的索引数值都落在哈希表上,我们会在再次对数值做一个取模的操作。
因为哈希表是个数组,如果数量大于哈希表,此时就算哈希函数计算的再均匀,也避免不了会有几位学生的名字同时映射到哈希表 同一个索引下标的位置。
如果两个元素都索引到相同位置,此时出现的现象叫做哈希碰撞。
哈希碰撞的两种解决办法:拉链法和线性探测法
拉链法:就是要选择适当的哈希表的大小,这样既不会因为数组空值而浪费大量内存,也不会因为链表太长而在查找上浪费太多时间。
线性探测法:一定要保证tableSize大于dataSize。 我们需要依靠哈希表中的空位来解决碰撞问题。
当我们要使用集合来解决哈希问题的时候,优先使用unordered_set,因为它的查询和增删效率是最优的,如果需要集合是有序的,那么就用set,如果要求不仅有序还要有重复数据的话,那么就用multiset。
总结一下,当我们遇到了要快速判断一个元素是否出现集合里的时候,就要考虑哈希法。
但是哈希法也是牺牲了空间换取了时间,因为我们要使用额外的数组,set或者是map来存放数据,才能实现快速的查找。
2、有效的字母异位词
数组在哈希表中的经典应用
class Solution {
public:
bool isAnagram(string s, string t)
{
int hash[26] = {0};
for(int i = 0; i < s.size(); i++)
{
hash[s[i]- 'a']++;
}
for(int i = 0; i < t.size(); i++)
{
hash[t[i]- 'a']--;
}
for(int i = 0; i < 26; i++)
{
if(hash[i] != 0)
{
return false ;
}
}
return true;
}
};
for (int i = 0; i < s.size(); i++) {
record[s[i] - 'a']++;
}//这个循环遍历字符串s中的每个字符。对于每个字符,
//它计算该字符与'a'之间的差值(这实际上是利用了ASCII码值的特性,
//因为'a'到'z'的ASCII码值是连续的,所以'a'的ASCII码值减去它自身等于0,
//'b'的ASCII码值减去'a'的ASCII码值等于1,依此类推)。
//然后,它使用这个差值作为record数组的索引,并将对应元素的值增加1。
//这样,record数组就记录了字符串s中每个字母的出现次数。
3、两个数组的交集
用unordered_set 读写效率是最高的,并不需要对数据进行排序,而且还不要让数据重复,所以选择unordered_set。
unordered_set 此数据结构可以直接内部去重,不需要额外处理。
unordered_set<int> nums_set(nums1.begin(), nums1.end());
这行代码创建了一个unordered_set(无序集合)nums_set,并使用nums1向量的起始迭代器(nums1.begin())和终止迭代器(nums1.end())作为参数,这样nums_set就包含了nums1中的所有元素,但因为是集合,所以每个元素都是唯一的,即重复的元素会被自动去除。
class Solution {
public:
vector<int> intersection(vector<int>& nums1, vector<int>& nums2)
{
unordered_set<int> result_set;
unordered_set<int> num_set(nums1.begin(), nums1.end());
for(int i = 0; i < nums2.size(); i++)
{
if(num_set.find(nums2[i]) != num_set.end())
{
result_set.insert(nums2[i]);
}
}
return vector<int>(result_set.begin(), result_set.end());
}
};
4、快乐数
对于个位数的处理:模10运算 n%10获得n的各位数字,然后对n进行位数缩减(n/=10)
疑问点:int sum = getSum(n);中的sum已经在上卖弄的getsum函数中被赋值为各个位上数字的平方和了,为什么还要在while循环内再次赋值。
解答:在 isHappy 函数中,int sum = getSum(n); 这行代码位于 while 循环内部,意味着每次循环迭代时都会重新执行这个赋值操作。这是因为在判断快乐数的过程中,我们需要不断地更新 n 的值为其各个位上数字的平方和,并基于这个新的值进行下一次迭代。
利用unordered_set中的set.find成员函数
class Solution {
public:
int getsum(int n)
{
int sum = 0;
while(n)
{
sum += (n % 10)* (n % 10);
n /= 10;
}
return sum;
}
bool isHappy(int n)
{
unordered_set<int> set;
while(1)
{
int sum =getsum(n);
if(sum ==1)
{
return true;
}
if(set.find(sum) != set.end())//
{
return false;
}else
{
set.insert(sum);
}
n = sum;
}
}
};
在 if (set.find(sum) != set.end()) 这个条件判断中,set.find(sum) 尝试在集合 set 中查找值为 sum 的元素。如果找到了,set.find(sum) 将返回一个指向该元素的迭代器;如果没有找到,它将返回 set.end()
这里的 set.end() 是一个迭代器,它指向集合中最后一个元素之后的位置,即一个“尾后”位置,表示集合的结束。
如果 set.find(sum) 返回的迭代器不等于 set.end(),说明集合中已经存在值为 sum 的元素,即我们之前已经计算过这个 sum 值了。这通常意味着我们已经进入了一个循环,因为我们在不断地对 n 进行操作,但得到的 sum 值却在重复出现。因此,我们可以断定这个数字不是一个快乐数,并返回 false。
如果 set.find(sum) 返回的迭代器等于 set.end(),说明集合中不存在值为 sum 的元素,即我们之前还没有计算过这个 sum 值。这意味着我们可以继续迭代过程,将 sum 添加到集合中以备将来检查,并更新 n 的值为 sum,以便在下一次迭代中继续计算。
5、两数之和
map可以在最短的时间内查看key是否在map中出现过
我们不仅要知道元素有没有遍历过,还要知道这个元素对应的下标,需要使用 key value结构来存放,key来存元素,value来存下标,那么使用map正合适。
map是一种key value的存储结构,可以用key保存数值,用value再保存数值所在的下标。
接下来需要明确两点:
map用来做什么
map中key和value分别表示什么
map目的用来存放我们访问过的元素,因为遍历数组的时候,需要记录我们之前遍历过哪些元素和对应的下标,这样才能找到与当前元素相匹配的(也就是相加等于target)
这道题 我们需要 给出一个元素,判断这个元素是否出现过,如果出现过,返回这个元素的下标。
那么判断元素是否出现,这个元素就要作为key,所以数组中的元素作为key,有key对应的就是value,value用来存下标。
所以 map中的存储结构为 {key:数据元素,value:数组元素对应的下标}。
class Solution {
public:
vector<int> twoSum(vector<int>& nums, int target)
{
std::unordered_map <int,int> map;
for(int i = 0; i < nums.size(); i++)
{
auto iter = map.find(target - nums[i]);
if(iter != map.end())
{
return {iter->second, i};
}
map.insert(pair<int, int>(nums[i], i));
}
return {};
}
};
return {iter->second, i};
中的second访问的是map中的第二个键值,也就是value
例如 iter->first 访问的就是第一个键值,也就是 key