堆排序时间复杂度:O(NlogN)
堆排序不稳定
无论是最小堆还是最大堆 都可以实现升序和降序两种排序。
但建议最小堆实现降序排序,最大堆实现升序排序
最小堆实现从小到大排序
#include <iostream>
using namespace std;
int h[10000];
int n;
void siftdown(int i);
int deletemin(); //最小堆实现从小到大排序
int main (){
cin>>n;
int i;
for(i=1;i<=n;i++){
cin>>h[i];
}
for(i=n/2;i>=1;i--){
siftdown(i);
}
int num=n;
for(i=1;i<=num;i++){
if(i>1)cout<<" ";
cout<<deletemin();
}
return 0;
}
int deletemin(){
int t;
t=h[1];
h[1]=h[n];
n--;
siftdown(1); //取出最小值并将最后一个元素放入h[1]后要调整位置使重新符合最小堆性质。
return t;
}
void siftdown(int i){
int flag=0;
int t;
while(flag==0&&i*2<=n){
t=i;
if(h[i*2]<h[i]){
t=i*2;
}
if(i*2+1<=n&&h[i*2+1]<h[t]){
t=i*2+1;
}
if(i==t)flag=1;
else {
swap(h[t],h[i]);
i=t;
}
}
return ;
}
/*尝试数据验证
5
1 9 3 5 2 //输入
1 2 3 5 9 //输出
*/
上面的代码排序后的数需输出或用另一个数组接收qaq
如果用最大堆实现从小到大排序会好一点,排完数放在原数组。
同理用最小堆实现最大到小排序,排完后数放在原数组。
最大堆实现从小到大排序
#include <iostream>
using namespace std;
int n;
int h[10000];
void siftdown(int i);
void heapsort(); //最大堆实现从小到大排序。
int main()
{
cin >> n;
int i;
for (i = 1; i <= n; i++) {
cin >> h[i];
}
for (i = n / 2; i >= 1; i--) {
siftdown(i); //建堆
}
int num=n;
heapsort(); //最大堆排序
for(i=1;i<=num;i++){
if(i>1)cout<<" ";
cout<<h[i];
}
return 0;
}
void heapsort()
{
while (n>1) {
swap(h[1],h[n]); //把最大的数h[1]放到最后即最后一个数变为最大的。
n--;
siftdown(1);
}
return ;
}
void siftdown(int i) //跟最小堆类似
{
int flag = 0;
int t;
while (flag == 0 && i * 2 <= n) {
t = i;
if (h[i * 2] > h[t]) {
t = i * 2;
}
if (i * 2 + 1 <= n && h[i * 2 + 1] > h[t]) {
t = i * 2 + 1;
}
if (t == i)
flag = 1;
else {
swap(h[t], h[i]);
i = t;
}
}
return;
}
/*
8
1 5 2 3 6 4 8 9 //输入
1 2 3 4 5 6 8 9 //输出
*/
最小堆实现从大到小排序
相对于上一个代码只改了siftdown中的两个大于号qaq
#include <iostream>
using namespace std;
int n;
int h[10000];
void siftdown(int i);
void heapsort(); //最小堆实现从大到小排序
int main()
{
cin >> n;
int i;
for (i = 1; i <= n; i++) {
cin >> h[i];
}
for (i = n / 2; i >= 1; i--) {
siftdown(i);
}
int num=n;
heapsort();
for(i=1;i<=num;i++){
if(i>1)cout<<" ";
cout<<h[i];
}
return 0;
}
void heapsort()
{
while (n>1) {
swap(h[1],h[n]);
n--;
siftdown(1);
}
return ;
}
void siftdown(int i)
{
int flag = 0;
int t;
while (flag == 0 && i * 2 <= n) {
t = i;
if (h[i * 2] < h[t]) {
t = i * 2;
}
if (i * 2 + 1 <= n && h[i * 2 + 1] < h[t]) {
t = i * 2 + 1;
}
if (t == i)
flag = 1;
else {
swap(h[t], h[i]);
i = t;
}
}
return;
}
/*
8
1 2 6 4 2 9 2 1 //输入
9 6 4 2 2 2 1 1 //输出
*/