按照升序输出小于n的所有寂寞的数字,每行一个。

本文探讨了基于《道德经》哲学思想的数学问题,即寂寞数字的概念与生成原理。通过对给定数字进行特定运算,形成递增序列,确定哪些数字无法通过该运动生成,即所谓的寂寞数字。文章提供了实现这一概念的C语言代码示例。
摘要由CSDN通过智能技术生成

问题描述

道德经曰:一生二,二生三,三生万物。

  对于任意正整数n,我们定义d(n)的值为为n加上组成n的各个数字的和。例如,d(23)=23+2+3=28, d(1481)=1481+1+4+8+1=1495。

  因此,给定了任意一个n作为起点,你可以构造如下一个递增序列:n,d(n),d(d(n)),d(d(d(n)))....例如,从33开始的递增序列为:

  33, 39, 51, 57, 69, 84, 96, 111, 114, 120, 123, 129, 141, ...

  我们把n叫做d(n)的生成元,在上面的数列中,33是39的生成元,39是51的生成元,等等。有一些数字甚至可以有两个生成元,比如101,可以由91和100生成。但也有一些数字没有任何生成元,如42。我们把这样的数字称为寂寞的数字。

输入格式

  一行,一个正整数n。

输出格式

  按照升序输出小于n的所有寂寞的数字,每行一个。

样例输入

40

样例输出

1

3

5

7

9

20

31

数据规模和约定

  n<=10000、

#include <stdio.h>
#define N 100


int main(){
	int n,i,j=0;
	int a,b,c,d;
	int t[N];
	printf("请输入一个正整数:");
	scanf("%d",&n);
	for(i=1;i<n;i++){

		/*a=i%10;
		b=i/10%10;
		c=i/100%10;
		d=i/1000;
		t[j++]=i+a+b+c+d;*/
		a=i;
		t[j]=i;
		while(a){
			
			t[j]+=a%10;
			a=a/10;
		}
		//printf("%d ",t[j]);
		j++;
	}
	
	int s=0;
	for(i=1;i<=n;i++){
		int count=0;
		for(s=0;s<=j;s++){
			if(i==t[s]){
				count=1;
			}
		}
		//printf("%d\n",i);
		if(count==0)
			printf("%d\t",i);
	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值