深度学习
鹅厂幼儿园园长
这个人很懒什么也没有留下
展开
-
深度学习-CNN入门
对于CNN的理解按照过程来理解:1. 卷积,因为特征往往具有局部性,所以我们取消了第一层和第二层之间的全连接,改之为部分连接,即某些神经元只连接着某些像素点。这能够有效地减少我们的参数数量。而在这个过程中,我们还使用了权值共享这一个方法,其意思是,对于一张图片,其特征萃取,在全局中的任何局部应该都是可取的,也就是说,萃取某一个特征,我们可以对每一个局部都做同样的事情,因此,按照卷积的思原创 2015-07-27 17:59:29 · 2036 阅读 · 0 评论 -
深度学习-神经网络1
概述以监督学习为例,假设我们有训练样本集 ,那么神经网络算法能够提供一种复杂且非线性的假设模型 ,它具有参数 ,可以以此参数来拟合我们的数据。为了描述神经网络,我们先从最简单的神经网络讲起,这个神经网络仅由一个“神经元”构成,以下即是这个“神经元”的图示:这个“神经元”是一个以 及截距 为输入值的运算单元,其输出为 ,其中函数 被称为“激活函原创 2015-08-23 19:05:12 · 1207 阅读 · 0 评论 -
深度学习-AlexNet入门
对AlexNet的理解AlexNet是Hinton以及他的学生Alex为了回应外界对于深度学习的质疑,而设计的一个用于图像分类的深度卷积神经网络。我们可以这样子理解:结构:卷积操作减少了参数,并且将萃取出来的特征传到了下一层,而下一层的池化操作,则将一些特征进行了合并,减少了特征数量,还有效地防止了特征过多导致的过拟合现象,通过将这个过程重复若干次,得到了一些高层次的特征,接着,我原创 2015-07-28 11:13:30 · 4574 阅读 · 1 评论 -
Ubuntu 14.04 安装&&配置CUDA7.0
最近为了给卷积神经网络提速,本人尝试NviDIA的CUDA,以下是安装教程,只要按照笔者的教程做,基本可以保证成功安装。环境:Ubuntu 14.04安装步骤:1. 首先推荐新安装Ubuntu 14.04首先验证你是否有nvidia的显卡并且显卡支持CUDA(http://developer.nvidia.com/cuda-gpus这个网站查看你是否有支持gpu的显原创 2015-08-03 23:13:34 · 852 阅读 · 0 评论 -
Improving Multiview Face Detection with Multi-Task Deep Convolutional Neural Networks 基于深度学习的人脸检测算法
Improving Multiview Face Detection with Multi-Task Deep Convolutional Neural Networks概述:这是一篇基于深度卷积神经网络的人脸检测论文,达到了很好的效果,同时速度相比起其他深度学习系的方法也有所提高。算法:1. 作者先使用几个级联的 Multiview detector来对输入图片进行初步鉴别,以此原创 2015-08-15 21:03:45 · 3151 阅读 · 0 评论