深度学习
AlexDish
这个作者很懒,什么都没留下…
展开
-
飞桨(Paddlepaddle)的动态图、静态图全流程例子
飞桨(Paddlepaddle)的动态图、静态图全流程例子前言数据动态图训练评估测试静态图训练评估测试前言本文主要记录一下,使用飞桨(Paddlepaddle)进行模型训练、评估、测试的用法,作为以后的备忘录。数据本次实验的数据是使用MNIST,这个数据相当于图像识别领域的Helloworld。加载方式是使用paddle的方式来加载。Python版本:3.7Paddle版本:1.8.5注意:使用2.0以上的Paddle,使用静态图时需要加入一句paddle.enable_static()动态原创 2021-07-18 00:06:40 · 2846 阅读 · 2 评论 -
记一次dlib安装失败
记一次dlib安装失败安装dlib失败了。错误如下。C:\Users\xxx>pip install dlib==19.9.0Collecting dlib==19.9.0 Using cached dlib-19.9.0.tar.gz (3.1 MB)Building wheels for collected packages: dlib Building wheel for dlib (setup.py) ... error ERROR: Command errored ou原创 2021-04-20 22:23:05 · 4402 阅读 · 24 评论 -
飞桨中softmax_with_cross_entropy的用法
飞桨中softmax_with_cross_entropy的用法本文只作为笔记用。环境:paddle 1.8.5一直以来不太清楚这个如何调用,只知道例程里是这样用,不知所以然。下面记录一下它的用法。源码如下:def softmax_with_cross_entropy(logits, label, soft_label=False,原创 2021-01-16 23:09:43 · 2483 阅读 · 0 评论 -
飞桨中accuracy的用法
飞桨中accuracy的用法本文只作为笔记用。环境:paddle 1.8.5一直以来不太清楚这个如何调用,只知道例程里是这样用,不知所以然。下面记录一下它的用法。源码如下:def accuracy(input, label, k=1, correct=None, total=None): """ accuracy layer. Refer to the https://en.wikipedia.org/wiki/Precision_and_recall This原创 2021-01-16 17:15:45 · 992 阅读 · 0 评论 -
使用飞桨搭一个简单的神经网络
使用飞桨搭一个简单的神经网络前言详细思路处理数据写出前向过程选择优化器训练过程打乱数据、小批量化转成tensor前向计算计算损失并反向传播使用优化器最小化损失清理梯度??Dish还不太明白保存模型验证、使用模型load模型转换为tensor并开始推理全部代码前言应该是昨天吧,使用numpy搭了一个简单的神经网络(传送直通车——使用numpy搭一个简单的神经网络),那么今天就来一个使用飞桨(paddlepaddle)来搭一个吧。毕竟国产的要支持一下,不然以后美国再一出手,不允许google对中国开源te原创 2020-12-19 15:29:03 · 1526 阅读 · 2 评论 -
使用numpy搭一个简单的神经网络
使用numpy搭一个简单的神经网络前言神经网络是基本思想详细讲解数据处理前向计算损失函数梯度计算更新权重、偏置训练过程所有代码前言对于神经网络的学习,本人是先从应用的层面学习,就是先做项目,对图像识别类的项目使用keras去训练、识别、部署。但是对基础的知识不熟悉,于是最近在百度AI Studio里从零基础入门深度学习,共勉吧。神经网络是基本思想这里为了实现线性回归模型,例子使用波士顿房价数据,这个相当于编程语言里的“Hello world”项目。数据里有13个维度的数据作为输入XXX,1个维度的原创 2020-12-19 00:32:16 · 465 阅读 · 1 评论 -
用最简单的例子解释神经网络
用最简单的例子解释神经网络起源基础知识图例单一层神经网络多层神经网络起源本篇文章来自于百度AIStudio的学习课程,关于神经网络、前向推理、后向传播、后向梯度计算等等的例子。课程中讲到一个买苹果的例子,然后类比介绍了有关神经网络的相关知识。基础知识先普及一下求导的加法法则和链式法则:假设z=f(v)+g(v)z=f(v)+g(v)z=f(v)+g(v), 那么要使zzz对vvv求层,即dzdv=df(v)dv+df(v)dv\frac{dz}{dv}=\frac{df(v)}{dv}+\fra原创 2020-12-13 00:23:08 · 1725 阅读 · 0 评论 -
深刻去理解卷积神经网络(CNN)工作原理
深刻去理解卷积神经网络(CNN)工作原理前言基础介绍以及数据准备使用Keras建立CNN使用Tensorflow建立CNN前言对于我们半路出家的神经网络学习者,有些会是走捷径先学习如何实现项目,然后再回来学习各种基础。本文只适合于小白学习,大牛请打转向灯绕行。基础介绍以及数据准备卷积神经网络是通过以卷积计算为主,把前一层网络的数据计算生成这一层网络的一种网络结构。它最先使用在图像识别的领域,后来大家觉得它牛B,什么领域都想试试水。它的历史就不在这里说了,因为我们不是历史研究者。卷积公式这里也不原创 2020-10-24 13:30:33 · 554 阅读 · 0 评论 -
用于回归的神经网络写法(基于make_wave数据集)
用于回归的神经网络写法(基于make_wave数据集)前言数据展示以及准备经典算法第一种神经网络写法第二种神经网络写法第三种神经网络写法结论前言本文本适合于学习神经网络的小白,高手或大神请绕行。上一集我做了使用iris(鸢尾花分类)数据集进行一个神经网络分类的学习,这次使用一个虚拟产生的数据集(make_wake)进行神经网络回归的学习。make_wake数据集是使用mglearn库产生一系列叠加在线性数据上带噪声波形分布数据。大概意思如下图。因此,我们通过上述输入的x特征来预测输出的y,原创 2020-10-19 23:05:19 · 2231 阅读 · 0 评论 -
用于分类的神经网络写法(基于iris数据集)
用于分类的神经网络写法(基于iris数据集)前言数据展示以及准备经典算法第一种神经网络写法第二种神经网络写法第三种神经网络写法结论前言本文本适合于学习神经网络的小白,高手或大神请绕行。iris(鸢尾花分类)数据集是一个机器学习中的经典数据集,类别分为Setosa,Versicolour,Virginica三种;输入的特征有四个(即四维数据),分别为花萼长度,花萼宽度,花瓣长度,花瓣宽度。从我们的通识来说,知道同一类的种类会有相近的花形状,不同一类的种类的花会有差别。因此,可以通过上述四个特征来进行原创 2020-10-16 23:22:22 · 4646 阅读 · 3 评论 -
关于Keras里常用各种优化器的实验
关于Keras里常用各种优化嘎嘎的实验前言其他数据以及神经网络结构优化器之SGD优化器之Adagrad优化器之Adam优化器之RMSprop优化器之Adadelta优化器之Adamax优化器之Nadam后记前言一直以来只知道根据例程里的使用SGD优化器,也不知道有什么好处和速度,为此就列出Keras里常用的优化器,分别对比一下他们效果。本实验有SGD,Adagrad,Adam,RMSprop,Adadelta,Adamax,Nadam的实验对比。本人只合适小白学习者看,反正我也不懂什么公式的。其他原创 2020-10-03 11:21:07 · 2015 阅读 · 0 评论