寻找最低公共父节点

本文讨论了最低公共父节点的概念,指出其需要满足的条件,并提出了思路。在实现过程中,通过设置标志位来判断节点在左子树或右子树。文章提及了特殊情况的处理,如节点相等、节点可能不是叶子节点,以及节点是否一定存在于树中。同时,指出了原始代码的效率问题,提出使用单个递归过程来优化解决方案。
摘要由CSDN通过智能技术生成

最低公共父节点,意思很好理解。

思路1:最低公共父节点满足这样的条件:两个节点分别位于其左子树和右子树,那么定义两个bool变量,leftFlag和rightFlag,如果在左子树中,leftFlag为true,如果在右子树中,rightFlag为true,仅当leftFlag == rightFlag == true时,才能满足条件

#include <iostream>

using namespace std;

struct Node
{
	Node(int i = 0, Node *pLeft = NULL, Node *pRight = NULL) : data(i), left(pLeft),
		right(pRight) {}
	Node *left;
	Node *right;
	int data;
};

Node *constructNode(Node **pNode1, Node **pNode2)
{
	Node *node12 = new Node(12);
	Node *node11 = new Node(11);
	Node *node10 = new Node(10);
	Node *node9 = new Node(9, NULL, node12);
	Node *node8 = new Node(8, node11, NULL);
	Node *node7 = new Node(7);
	Node *node6 = new Node(6);
	Node *node5 = new Node(5, node8, node9);
	Node *node4 = new Node(4, node10);
	Node *node3 = new Node(3, node6, node7);
	Node *node2 = new Node(2, node4, node5);
	Node *node1 = new Node(1, node2, node3);

	*pNode1 = node6;
	*pNode2 = node12;

	return node1;
}

bool isNodeIn(Node *root, Node *node1, Node *node2)
{
	if (node1 == NULL || node2 == NULL)
	{
		throw("invalid node1 and node2");
		return false;
	}
	if (root == NULL)
		return false;

	if (root ==
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值