algae
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
65、概率图模型与机器学习技术综合解析
本文系统解析了概率图模型与机器学习的核心技术,涵盖数据类型与分布、图模型基础、模型选择与评估等内容,深入探讨了监督、无监督、半监督及强化学习等方法,并介绍了精确与近似推理、主流采样技术。结合分类、聚类和回归的实际应用案例,进一步阐述了模型优化策略,如处理过拟合与欠拟合、模型调优和算法融合。最后总结技术体系并展望未来发展趋势,包括AutoML、深度学习与概率模型的结合以及模型可解释性提升。原创 2025-11-16 10:28:54 · 25 阅读 · 0 评论 -
64、优化算法与拉格朗日乘数法在约束优化中的应用
本文介绍了BFGS算法和共轭梯度法在无约束优化中的应用,并深入探讨了拉格朗日乘数法在单约束与多约束优化问题中的原理与实现。通过构建拉格朗日函数并求解驻点,有效处理约束条件下的最优解问题。文章还分析了拉格朗日对偶问题的性质及其提供的原问题下界,比较了不同优化方法的存储需求与适用场景,并结合实际案例和流程图展示了方法的具体应用。最后给出了优化算法的选择策略及未来研究方向。原创 2025-11-15 13:28:59 · 32 阅读 · 0 评论 -
63、数学分析与优化方法详解
本文深入探讨了数学分析与优化方法的核心理论与应用,涵盖实对称核的特征函数分解、多元微积分中的梯度与海森矩阵、凸性与詹森不等式等基础内容。重点介绍了多种优化算法,包括梯度下降法、共轭梯度法、牛顿法和拟牛顿法,分析其原理、优缺点及适用场景,并通过示例代码演示共轭梯度算法在二次函数优化中的实际应用,为复杂问题的求解提供系统性指导。原创 2025-11-14 10:20:55 · 24 阅读 · 0 评论 -
62、概率图模型中的近似推理与线性代数基础
本文深入探讨了概率图模型中的近似推理方法及其在图像重建中的应用,涵盖了α-扩展、循环信念传播、变分推断等多种技术,并结合线性代数基础理论,如向量运算、矩阵分解、特征值分析等,构建了从理论到实践的完整知识体系。文中还提供了相关代码示例与练习题,帮助读者巩固理解。通过实际案例分析,展示了近似推理与线性代数在数据处理和模型优化中的关键作用,为机器学习与人工智能领域的研究和应用提供了坚实基础。原创 2025-11-13 09:17:33 · 21 阅读 · 0 评论 -
61、马尔可夫网络的近似推理与优化方法
本文系统介绍了马尔可夫网络中的近似推理与优化方法,涵盖边缘分布的近似技术如循环信念传播、吉布斯采样和均值场方法,以及期望传播(EP)在复杂消息传递中的扩展应用。针对最大后验概率(MAP)估计,详细讨论了迭代条件模式(ICM)、对偶分解、基于图割的精确算法及其在二进制和多状态网络中的应用,特别是Potts模型的α-扩展转换方法。结合图像恢复与聚类等实际案例,分析了各类方法的适用场景、优缺点及选择策略,并展望了未来在算法优化、深度学习融合与高维数据处理方向的发展潜力。原创 2025-11-12 13:01:04 · 25 阅读 · 0 评论 -
60、概率模型中的变分近似与信息最大化技术
本文系统介绍了概率模型中的多种变分近似方法及其在信息最大化和图模型推理中的应用。重点涵盖控制问题中的变分近似、局部与KL变分方法的理论推导与关系分析、基于KL散度的互信息最大化算法,以及循环信念传播在多连通图上的近似推理机制。通过对比不同方法的计算复杂度、收敛性与精度,并结合实际案例与代码示例,展示了各类技术的适用场景与优化方向,为复杂概率模型的高效近似提供了理论基础与实践指导。原创 2025-11-11 09:11:31 · 18 阅读 · 0 评论 -
59、确定性近似推理技术详解
本文详细介绍了确定性近似推理技术,涵盖拉普拉斯方法、基于KL散度的变分推理、因子化与结构化近似等核心方法。文章分析了各类方法的原理、优缺点及适用场景,并通过贝叶斯图像去噪和机器人手臂控制两个实际案例展示了其应用。此外,还总结了不同技术的对比,探讨了未来发展趋势,为处理复杂分布的近似推理问题提供了系统性的理论支持与实践指导。原创 2025-11-10 16:00:34 · 18 阅读 · 0 评论 -
58、采样方法与重要性采样技术详解
本文系统介绍了切片采样、重要性采样及顺序重要性采样(粒子滤波)等核心采样技术,涵盖其原理、算法流程与实际应用。通过理论分析与玩具人脸跟踪示例,展示了这些方法在处理复杂和高维分布中的有效性,并提供了相关代码实现与练习题。文章还探讨了采样方法在实际应用中面临的挑战及其解决方案,并展望了深度学习融合、自适应策略和分布式采样等未来发展趋势,为读者深入理解现代采样技术提供了全面指导。原创 2025-11-09 12:20:43 · 22 阅读 · 0 评论 -
57、蒙特卡罗采样方法:原理、算法与应用
本文系统介绍了蒙特卡罗采样方法的基本原理、核心算法及其应用。重点分析了吉布斯采样在强相关变量下的局限性,并详细阐述了马尔可夫链蒙特卡罗(MCMC)方法,包括Metropolis–Hastings采样及其高斯提议分布的实现。进一步探讨了引入辅助变量的高级采样技术,如混合蒙特卡罗(HMC)、Swendson–Wang(SW)方法和切片采样,展示了它们在处理多模态、强相关及复杂分布时的优势。通过对比分析与实际应用案例,文章总结了各类方法的适用场景,并展望了未来在贝叶斯推断、图像处理和深度学习中的发展方向。原创 2025-11-08 10:20:25 · 23 阅读 · 0 评论 -
56、抽样方法全解析:从基础到高级应用
本文全面解析了从基础到高级的各类抽样方法,涵盖单变量与多元分布的离散和连续情况。详细介绍了拒绝抽样、祖先抽样、吉布斯抽样及其结构化变体的原理、算法流程与适用场景,并讨论了样本独立性、方差、收敛性等关键问题。结合贝叶斯统计与机器学习中的实际应用案例,展示了不同抽样技术的优势与局限。最后展望了高维抽样、并行化与自适应方法的发展趋势,为实际问题中的抽样策略选择提供了系统指导。原创 2025-11-07 09:56:09 · 29 阅读 · 0 评论 -
55、神经网络模型中的序列学习与潜变量应用
本文深入探讨了神经网络模型中的序列学习与潜变量应用,重点分析了Hopfield网络及其增强版本在处理序列歧义问题上的优势。通过引入确定性连续潜变量,模型能够有效提升回忆能力和动态建模能力。文章还介绍了多种神经元模型,包括随机放电神经元、动态突触模型和漏电积分-放电模型,并比较了它们在生物合理性、序列回忆性能和计算复杂度方面的差异。结合最大似然学习框架,推导了各模型的梯度学习规则,展示了如何通过梯度上升法训练这些网络。最后,提供了模型选择建议与未来研究方向,为相关领域的理论发展与实际应用提供了系统性参考。原创 2025-11-06 09:34:06 · 19 阅读 · 0 评论 -
54、概率模型中的滤波递归、切换线性动力系统与分布式计算
本文探讨了概率模型中的滤波递归与切换线性动力系统(SLDS),分析了其在金融、语音处理等领域的应用及推理复杂性,并介绍了基于高斯混合的近似计算方法。同时,研究了随机Hopfield网络在分布式计算中的作用,比较了Hebb、伪逆和最大似然等学习规则在存储相关序列和抗噪声方面的性能差异。通过实例和实验表明,最大似然规则在处理高度相关和噪声干扰的数据时具有更强的鲁棒性和准确性。最后展望了这些模型在理论深化、实际应用拓展以及跨学科融合方面的潜力。原创 2025-11-05 11:10:11 · 20 阅读 · 0 评论 -
53、隐线性动态系统(SLDS)的平滑方法与重置模型
本文深入探讨了隐线性动态系统(SLDS)中的高斯和滤波与平滑方法,重点介绍了基于期望校正(EC)的近似递归与有限混合近似技术,以解决平滑后验计算中的复杂性问题。同时,对比了广义伪贝叶斯(GPB)等经典方法,突出了EC方法在保留连续变量未来信息方面的优势。文章还系统介绍了多种重置模型,包括SLDS变点模型、运行长度形式主义和泊松重置模型,并结合交通流量、股票价格及煤矿灾难等实际案例展示了其应用价值。最后,总结了各类方法的适用场景、实际应用注意事项及未来发展趋势,为SLDS建模与变点检测提供了全面的技术参考。原创 2025-11-04 09:02:50 · 22 阅读 · 0 评论 -
52、切换线性动态系统:原理、挑战与高斯和滤波解决方案
本文介绍了切换线性动态系统(SLDS)的基本原理及其在复杂时间序列建模中的应用。SLDS结合了隐马尔可夫模型的离散状态切换与线性动态系统的连续状态演化,适用于系统动态发生跳跃的场景,如化工过程监测和金融市场分析。由于精确推理在计算上不可行,文章重点阐述了高斯和滤波这一近似方法,通过有限高斯混合来逼近后验分布,并详细描述了其递归更新、权重计算与组件合并流程。同时讨论了性能评估、优化策略及常见问题的解决方案,并展望了SLDS与深度学习、在线学习和多模态融合的未来发展方向。原创 2025-11-03 15:28:20 · 24 阅读 · 0 评论 -
51、线性动态系统与切换自回归模型解析
本文深入解析了线性动态系统(LDS)与切换自回归(SAR)模型的理论基础、学习方法及应用。首先以牛顿弹道物体轨迹估计为例,介绍了LDS的状态转移与观测模型,并讨论了参数学习中的可识别性问题、EM算法和子空间方法。随后引入SAR模型以处理观测数据中的突变,结合HMM框架实现推断与学习,涵盖语音建模等实际应用场景。文中还提供了相关代码实现说明与流程图,帮助理解模型构建与训练过程,展示了这些模型在信号处理、时间序列分析等领域的重要价值。原创 2025-11-02 13:45:42 · 19 阅读 · 0 评论 -
50、时间序列模型:自回归与潜在线性动态系统详解
本文深入探讨了时间序列分析中的两类核心模型:自回归(AR)模型与潜在线性动态系统(LDS)。详细阐述了它们的数学原理、训练方法及推理技术,包括过滤、平滑、预测和参数学习。通过金融预测、语音处理和轨迹建模等实例展示了模型的应用价值,并讨论了时变系数、条件异方差(ARCH/GARCH)、频谱分析等扩展形式。文章还对比了模型特性,提出了数值稳定性优化策略,探讨了非线性拓展与多模态融合方向,并展望了与深度学习结合、实时处理与不确定性量化的未来研究路径。原创 2025-11-01 13:54:16 · 19 阅读 · 0 评论 -
49、马尔可夫模型:从离散到连续的应用与分析
本文深入探讨了马尔可夫模型在时间序列分析中的应用,涵盖离散状态与连续状态两大类。重点介绍了隐马尔可夫模型(HMM)的基本原理、核心算法(如前向-后向算法、维特比算法、Baum-Welch算法)及其在语音识别、生物信息学、词性标注和目标跟踪等领域的实际应用。同时,文章还分析了连续状态马尔可夫模型中的观测线性动态系统(OLDS),包括其确定性与随机形式以及平稳分布特性。通过代码示例、流程图和案例分析,展示了模型的实现路径与推理过程,并展望了其未来发展方向。原创 2025-10-31 16:03:19 · 29 阅读 · 0 评论 -
48、隐马尔可夫模型及其相关模型深入解析
本文深入解析了隐马尔可夫模型(HMM)及其相关扩展模型的原理、学习与推理方法。内容涵盖HMM在机器人跟踪和打字预测中的基础应用,通过EM算法(即Baum-Welch算法)进行参数学习的过程,以及混合发射模型和HMM-GMM在连续观测下的建模方式。进一步介绍了判别式训练方法用于序列分类,并对比了显式持续时间模型、输入-输出HMM、线性链条件随机场(CRF)和动态贝叶斯网络(DBN)等模型的特点与适用场景。文章还分析了各模型在语音识别和自然语言处理中的实际应用,探讨了未来发展趋势如模型融合与鲁棒性增强,并推荐了原创 2025-10-30 11:29:19 · 18 阅读 · 0 评论 -
47、隐马尔可夫模型(HMM):原理、推理与应用
本文深入介绍了隐马尔可夫模型(HMM)的基本原理、经典推理问题及其解决方法,涵盖过滤、预测、平滑、似然计算、最可能路径推断等核心内容。通过前向-后向算法、Viterbi算法和EM算法等关键技术,结合窃贼定位、机器人自我定位、自然语言处理等实际应用示例,全面展示了HMM在序列建模中的强大能力。文章还提供了推理流程图、方法对比、代码实现注意事项及优化思路,帮助读者系统掌握HMM的理论与实践应用。原创 2025-10-29 11:11:23 · 43 阅读 · 0 评论 -
46、潜能力模型与离散状态马尔可夫模型
本文系统介绍了潜能力模型与离散状态马尔可夫模型的基本理论、扩展形式及其应用。潜能力模型涵盖拉施模型、布拉德利-特里-卢斯(BTL)模型、埃洛排名、格利科和真技能(TrueSkill)模型,用于评估学生或玩家的潜在能力,并讨论了最大似然与贝叶斯训练方法。离散状态马尔可夫模型部分阐述了一阶与高阶马尔可夫链、平稳性、稳态分布、模型拟合及混合模型聚类,结合PageRank等实际应用,并总结了模型优势、局限性与拓展方向。文中还提供了相关代码实现与练习思路,便于深入理解与实践。原创 2025-10-28 16:33:41 · 15 阅读 · 0 评论 -
45、多元数据分析中的因子分析及相关算法
本文深入探讨了多元数据分析中的核心方法——因子分析(FA)及其相关算法,涵盖EM迭代过程、混合因子分析、人脸建模与识别、概率主成分分析(PPCA)、典型相关分析(CCA)和独立成分分析(ICA)的理论推导与应用。文章详细介绍了各算法的概率模型、求解过程及相互关系,并通过可视化示例对比FA与PPCA的特性。同时提供了算法流程图、代码实现思路及实际应用场景,如人脸识别和多模态数据融合,最后总结了算法优劣并提出未来改进方向,为理解和应用低维表示学习提供了系统性参考。原创 2025-10-27 10:40:07 · 27 阅读 · 0 评论 -
44、政治书籍聚类与因子分析模型解析
本文深入解析了政治书籍的聚类分析与因子分析模型,探讨了基于共购信息的书籍聚类方法及其与政治倾向的关联。介绍了混合成员模型(如LDA)在文本主题发现中的应用,并详细阐述了因子分析的数学原理、参数估计方法(包括特征法和EM算法),以及其在降维与特征提取中的作用。文章还展示了模型在文本分析和人脸识别等领域的实际应用,并讨论了模型评估指标(如对数似然、AIC、BIC)与优化策略。最后展望了模型与深度学习融合及跨领域拓展的潜力。原创 2025-10-26 15:45:22 · 28 阅读 · 0 评论 -
43、机器学习中的混合模型与聚类方法
本文深入探讨了机器学习中的多种混合模型与聚类方法,包括专家混合模型、指示模型和混合成员模型(如LDA),详细介绍了它们的数学原理、参数学习方式及应用场景。文章涵盖了回归、分类、文档主题建模、社交网络分析等多种实际应用,并通过政治书籍聚类示例展示了基于邻接矩阵的团模型构建与推断过程。同时,对比了各类模型的优缺点,提供了根据数据类型、计算资源和可解释性需求进行模型选择的实用建议。最后展望了结合近似推断、深度学习与可解释性提升的未来研究方向。原创 2025-10-25 10:04:44 · 24 阅读 · 0 评论 -
42、混合模型:原理、算法与应用
本文系统介绍了混合模型的基本原理、核心算法及其在多个领域的应用。从离散表混合模型到高斯混合模型,详细推导了EM算法的E步与M步更新公式,并探讨了K-means与混合模型的联系。文章还涵盖了Parzen估计器、半监督学习扩展以及贝叶斯方法等内容,结合问卷分析和手写数字聚类等实例展示了模型的实际效果。最后对不同混合模型进行了比较,并展望了其与深度学习融合、自适应结构和分布式计算等未来发展趋势,为读者提供全面的理论指导与实践建议。原创 2025-10-24 16:53:37 · 34 阅读 · 0 评论 -
41、高斯过程中的协方差函数分析与分类应用
本文深入探讨了高斯过程中协方差函数的性质与分类应用。详细分析了Gamma-指数、平方指数(SE)和Ornstein-Uhlenbeck(OU)等协方差函数的形式与平滑性差异,并通过泰勒展开和傅里叶分析揭示其局部与全局行为。介绍了Mercer核理论与平稳核的谱表示,进而将高斯过程应用于二分类与多分类任务,采用Laplace近似处理后验非高斯性,并推导边缘似然及其对超参数的导数用于优化。文章还讨论了计算复杂度、模型扩展及与其他模型的关系,提供了理论基础与实践指导。原创 2025-10-23 11:06:53 · 36 阅读 · 0 评论 -
40、高斯过程:灵活的贝叶斯预测模型
本文系统介绍了高斯过程(Gaussian Process, GP)作为一种灵活的贝叶斯非参数预测模型的理论基础与应用方法。从参数模型到非参数建模的演进出发,深入阐述了高斯过程的核心思想——通过协方差函数定义输出之间的相关性,并实现对函数空间的先验建模。文章详细讲解了GP的预测机制、常见协方差函数(核函数)的性质与构造方法、带噪声数据的处理、超参数学习策略以及计算复杂度问题。同时,总结了高斯过程在金融、气象、机器人等领域的应用案例,并展望了其未来在高效近似算法、模型融合与新型协方差函数开发方面的发展趋势。原创 2025-10-22 10:10:54 · 32 阅读 · 0 评论 -
39、贝叶斯线性回归与分类:原理、方法及应用
本文深入探讨了贝叶斯线性回归与分类的核心原理、方法及其应用。内容涵盖贝叶斯框架下的回归与分类模型,重点介绍了边缘似然计算、超参数优化策略(如EM与ML-II)、以及多种后验近似技术,包括拉普拉斯近似、变分高斯近似和局部变分方法。同时,文章详细分析了稀疏建模范式下的尖峰-平板先验与相关向量机(RVM),并比较了不同方法的优缺点与适用场景。结合代码示例与练习题,为读者提供了理论与实践相结合的完整学习路径。原创 2025-10-21 11:28:02 · 24 阅读 · 0 评论 -
38、线性模型与贝叶斯方法在分类和回归中的应用
本文深入探讨了线性模型与贝叶斯方法在分类和回归问题中的应用。重点介绍了核逻辑回归与支持向量机的原理及其在非线性分类中的表现,分析了软零一损失对离群点的鲁棒性。在回归方面,阐述了贝叶斯线性模型如何通过引入参数先验来处理不确定性,并讨论了超参数的多种优化方法,如ML-II、EM算法和梯度优化。此外,还介绍了稀疏建模范式下的相关向量机(RVM),并通过流程图、代码示例、练习解析和实际案例展示了方法的选择与应用。文章最后展望了这些方法在未来的发展趋势,强调其在现代机器学习中的重要地位。原创 2025-10-20 15:35:14 · 16 阅读 · 0 评论 -
37、线性参数模型:从回归到分类的全面解析
本文深入探讨了线性参数模型在回归与分类任务中的理论基础与实际应用。从维度灾难问题出发,介绍了基函数选择与自适应策略,并通过引入对偶表示和核函数机制有效应对高维挑战。文章详细解析了普通最小二乘回归的对偶解法、逻辑回归的概率建模、决策边界性质、最大似然训练及梯度优化方法,涵盖批量与在线学习模式。进一步讨论了多类别分类的softmax扩展、核技巧在非线性分类中的应用,并提出避免过度自信的正则化与早停策略。结合流程图与手写数字分类案例,增强了理解与实践指导。最后展望了模型优化、深度学习融合与新型核函数设计等未来方向原创 2025-10-19 15:25:05 · 17 阅读 · 0 评论 -
36、线性模型与判别分析方法详解
本文详细介绍了Fisher线性判别、典型变量分析和线性参数回归模型等经典机器学习方法的原理与应用。重点探讨了Fisher目标函数在类内散布矩阵不可逆时的问题及其解决方案,包括使用SVD处理零空间的方法。典型变量分析被推广至多类多维场景,并通过手写数字数据示例展示了其优于PCA的类分离效果。在线性回归部分,涵盖了普通最小二乘、正则化、岭回归及径向基函数的应用。文章还提供了算法流程图、对比表格、实际注意事项与练习解答,系统地呈现了线性模型在分类与回归任务中的理论基础与实践技巧。原创 2025-10-18 09:01:14 · 20 阅读 · 0 评论 -
35、数据降维与分类的方法与应用
本文系统介绍了数据降维与分类的多种方法及其应用,涵盖核主成分分析(Kernel PCA)、典型相关分析(CCA)、监督线性投影和 Fisher 线性判别等核心技术。文章详细阐述了各类方法的数学原理、求解步骤及适用场景,并通过流程图和表格形式直观展示关键流程。同时介绍了概率潜在语义分析(PLSA)和非负矩阵分解(NMF)等扩展方法,并探讨了降维在数据可视化中的应用。结合代码实现与实践练习,帮助读者深入理解并应用这些技术。最后总结了整体流程,并展望了未来发展方向。原创 2025-10-17 13:50:24 · 21 阅读 · 0 评论 -
34、数据降维与矩阵分解技术全解析
本文全面解析了数据降维与矩阵分解技术,涵盖主成分分析(PCA)、潜在语义分析(LSA)、概率潜在语义分析(PLSA)和非负矩阵分解(NMF)等核心方法。文章详细介绍了各类技术的原理、适用场景及优化策略,并通过手写数字分类、文档主题发现、协同过滤等实际案例展示了其应用价值。同时探讨了计算效率优化、模型性能提升方向以及与深度学习融合的未来发展趋势,为数据分析与机器学习领域的研究和实践提供了系统性参考。原创 2025-10-16 13:40:20 · 19 阅读 · 0 评论 -
33、机器学习中的分类与降维技术解析
本文深入解析了机器学习中的最近邻分类与主成分分析(PCA)降维技术。通过手写数字分类实例,介绍了最近邻及其K近邻变体的原理、概率解释及优化策略,并探讨了其在高维数据下的局限性。随后详细阐述了PCA的数学推导与算法流程,展示了其在图像降维与重建中的应用,如手写数字压缩和特征脸提取。文章还讨论了PCA与最近邻结合使用的优势,提升了分类性能与计算效率。最后总结了技术要点并展望了未来发展方向,提供了理论学习与实践建议,适合希望掌握基础机器学习方法的读者参考。原创 2025-10-15 10:12:22 · 20 阅读 · 0 评论 -
32、机器学习中的分类方法与决策策略
本文系统介绍了机器学习中的多种分类方法与决策策略,涵盖半监督学习、贝叶斯决策、经验决策以及最近邻和K-最近邻分类算法。文章分析了各类方法的原理、优缺点及适用场景,并通过医疗决策等实例对比了不同策略的差异。同时探讨了距离度量选择、数据降维、模型评估与优化方法,并展望了深度学习融合、多模态分类和自适应分类等未来发展趋势,为实际应用中分类模型的选择与改进提供了全面指导。原创 2025-10-14 15:54:04 · 18 阅读 · 0 评论 -
31、机器学习:从基础概念到实践方法
本文全面介绍了机器学习的基础概念与实践方法,涵盖监督学习与无监督学习的核心思想,详细对比了生成方法、判别方法及经验风险最小化等建模范式。文章深入探讨了贝叶斯决策理论、模型选择、正则化与交叉验证技术,并通过面部性别分类、股票价格预测和工业异常检测等实例展示不同方法的应用。同时提供了多种学习风格的流程图与选择建议,帮助读者根据数据特点和任务目标选用合适的学习策略。原创 2025-10-13 09:23:51 · 16 阅读 · 0 评论 -
30、贝叶斯模型评估与假设检验
本文介绍了贝叶斯框架下的模型评估与假设检验方法。首先讨论了模型似然的计算及其在高维参数空间中的近似挑战,重点介绍了拉普拉斯方法和贝叶斯信息准则(BIC)的原理、优缺点及适用场景。随后,文章转向实际应用,利用贝叶斯假设检验分析分类器性能,通过构建不同假设(如H_indep、H_same、H_dep和H_a>b)并计算贝叶斯因子,判断分类器结果是否来自相同分布、是否存在依赖关系以及哪个分类器更优。文中结合多个实例展示了如何基于有限数据进行推理,并强调了数据量、先验选择和计算复杂度对分析结果的影响。最后提供了方法原创 2025-10-12 10:37:02 · 21 阅读 · 0 评论 -
29、概率模型学习与贝叶斯模型选择
本文系统介绍了概率模型学习与贝叶斯模型选择的核心方法与应用。内容涵盖变分近似、EM算法与梯度优化在缺失数据下的参数学习,详细推导了隐变量模型和无向图模型的梯度计算,并探讨了贝叶斯模型选择的理论框架,包括模型后验、贝叶斯因子、奥卡姆剃刀效应及其在硬币抛掷、骰子推断和曲线拟合中的实际应用。文章还总结了不同学习方法的优劣与适用场景,提供了代码实现建议与常见问题解答,为复杂概率模型的学习与选择提供了全面的理论支持与实践指导。原创 2025-10-11 15:08:35 · 19 阅读 · 0 评论 -
28、隐变量模型中的EM算法及其扩展与变分贝叶斯方法
本文系统介绍了隐变量模型中的EM算法及其多种扩展形式,包括部分M步、部分E步(如维特比训练和随机EM),并深入探讨了变分贝叶斯方法的原理与实现流程。文章分析了EM算法在确定性模型中的失效案例,并提出通过引入非确定性分布进行改进的策略。进一步,详细阐述了变分贝叶斯如何通过因子化近似联合后验分布来获得参数的后验估计,揭示了EM算法作为其在平坦先验与δ函数近似下的特例关系。结合石棉-吸烟-癌症网络实例,展示了VB方法的具体更新步骤,并对各类方法进行了对比总结,提供了实际应用中的选择依据与操作指南。最后展望了该领域原创 2025-10-10 15:38:05 · 17 阅读 · 0 评论 -
27、期望最大化算法:原理、应用与收敛性分析
本文深入探讨了期望最大化(EM)算法的原理、应用及收敛性。EM算法是一种处理含有缺失数据或隐藏变量模型的经典迭代方法,广泛应用于信念网络、马尔可夫网络等概率图模型的参数学习中。文章详细介绍了变分EM的推导过程、经典EM算法步骤,并通过多个示例展示其在不同场景下的实现方式。同时,分析了EM算法在收敛速度和局部最优方面的局限性,提出了与梯度方法和启发式搜索结合的优化策略。最后展望了EM算法在未来与深度学习融合的发展方向。原创 2025-10-09 16:43:12 · 19 阅读 · 0 评论 -
26、朴素贝叶斯及其扩展与含隐藏变量的学习方法
本文深入探讨了朴素贝叶斯分类器及其扩展方法,包括贝叶斯朴素贝叶斯和树增强朴素贝叶斯(TAN),并分析了在含隐藏变量或缺失数据情况下的学习策略。文章介绍了朴素贝叶斯的基本原理、优势与局限性,通过引入Dirichlet先验缓解小样本过度自信问题,并利用Chow-Liu树优化属性依赖结构。同时讨论了缺失数据机制对参数学习的影响,强调MAR假设的重要性。结合实际应用场景如文本分类、垃圾邮件过滤等,提供了代码实现思路与实践流程,帮助读者全面掌握该类模型的理论与应用。原创 2025-10-08 12:15:22 · 22 阅读 · 0 评论
分享