示例题目:POJ3624 
 参考资料:背包九讲
Charm Bracelet 
 Time Limit: 1000MS Memory Limit: 65536K 
 Total Submissions: 38631 Accepted: 16754 
 Description
Bessie has gone to the mall’s jewelry store and spies a charm bracelet. Of course, she’d like to fill it with the best charms possible from the N (1 ≤ N ≤ 3,402) available charms. Each charm i in the supplied list has a weight Wi (1 ≤ Wi ≤ 400), a ‘desirability’ factor Di (1 ≤ Di ≤ 100), and can be used at most once. Bessie can only support a charm bracelet whose weight is no more than M (1 ≤ M ≤ 12,880).
Given that weight limit as a constraint and a list of the charms with their weights and desirability rating, deduce the maximum possible sum of ratings.
Input
- Line 1: Two space-separated integers: N and M
 - Lines 2..N+1: Line i+1 describes charm i with two space-separated integers: Wi and Di
 
Output
- Line 1: A single integer that is the greatest sum of charm desirabilities that can be achieved given the weight constraints
 
Sample Input
4 6 
 1 4 
 2 6 
 3 12 
 2 7 
 Sample Output
23
没有要求必须装满背包
MLE代码: 
 时空复杂度:O(nm)
#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
int c[4000],w[4000];
int dp[4000][13000];
int main()
{
    ios::sync_with_stdio(false);
    int n,m;
    while(cin>>n>>m)
    {
        for(int i=1;i<=n;i++)
        {
            cin>>c[i]>>w[i];
        }
        memset(dp,0,sizeof(dp));
        for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=m;j++)
            {
                if(j-c[i]>=0)
                    dp[i][j]=max(dp[i-1][j],dp[i-1][j-c[i]]+w[i]);
                else dp[i][j]=dp[i-1][j];
            }
        }
        /*cout<<endl;
        for(int i=0;i<=n;i++)
        {
            for(int j=0;j<=m;j++)
            {
                cout<<dp[i][j]<<" ";
            }
            cout<<endl;
        }*/
        cout<<dp[n][m]<<endl;
    }
    return 0;
} 
AC代码: 
 时间复杂度:O(nm) 
 空间复杂度:O(m)
#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
int c[4000],w[4000];
int dp[13000];
int main()
{
    ios::sync_with_stdio(false);
    int n,m;
    while(cin>>n>>m)
    {
        for(int i=1;i<=n;i++)
        {
            cin>>c[i]>>w[i];
        }
        memset(dp,0,sizeof(dp));
        for(int i=1;i<=n;i++)
        {
            for(int j=m;j>=c[i];j--)
            {
                dp[j]=max(dp[j],dp[j-c[i]]+w[i]);
            }
        }
        cout<<dp[m]<<endl;
    }
    return 0;
}
                
                  
                  
                  
                  
                            
本文介绍了一个典型的背包问题案例,通过优化算法实现空间复杂度从O(nm)降至O(m)。文章提供了完整的代码示例,展示了如何在限定重量内选择最高价值的物品组合。
          
      
          
                
                
                
                
              
                
                
                
                
                
              
                
                
              
            
                  
					2270
					
被折叠的  条评论
		 为什么被折叠?
		 
		 
		
    
  
    
  
            


            