1、 DT:决策树(Decision Tree)
决策树,是树形结构,通过树形结构将各种情况组合都表示出来,每次分割的时候,都将当前的空间一分为二,简单来说就是每个分支进行一次Yes 或 No 的选择,直到所有选择都进行完毕,最终给出正确答案。
示例:
比如希望根据一个人的性别、年龄、身高和收入来判断,是否要考虑跟他相亲。用决策树可以这样去设计算法:

优点:
¬ 计算复杂度不高, 能同时处理数据和分类,在相对短的时间内能够对大数据集合做出可行且效果良好的分类结果
¬ 是一个白盒模型,根据决策树很容易推断出相应的逻辑表达式;
缺点:
¬ 忽略了数据集中属性之间的相关性
¬ 对噪声数据较为敏感
¬ 容易出现过拟合问题(为了得到一致假设而使假设变得过度严格称为过拟合,简单来理解就是模型设定的条件过于严格苛刻)
2、 RF:随机森林(Random Forest)
随机机的方式建立一个森林,森林里面有很多的决策