10.1-6题目:说明如何用两个栈来实现一个队列,并分析有关队列操作的运行时间。
解法:
1.有两个栈s1和s2,先往s1内插入a,b,c,这做的都是enqueue操作。
2.现在要做dequeue操作,即要得到a,这时可以将s1中的元素全部弹出并存入s2中,这时s2中元素的顺序(从底部到顶部)为c,b,a,这时做s2.pop()操作即可得到a。
3.如果继续做enqueue操作,比如插入d,f,则把d,f插入到s1中,
4.此时若要做dequeue操作,则直接弹出s2中的b,它是目前为止,呆得时间最长的元素
5.若继续做dequeue操作,则s2弹出c,
6.若继续做dequeue操作,则s2为空,此时做步骤2的操作,
7.以此类推,就实现了用两个栈来实现一个队列的目的。
插入操作的时间为O(1),删除操作的时间<=O(n),即小于线性时间,有时可能为O(1).
10.1-7题目:说明如何用两个队列来实现一个栈,并分析有关栈操作的运行时间。
解法:
1.有两个队列q1和q2,先往q1内插入a,b,c,这做的都是栈的push操作。
2.现在要做pop操作,即要得到c,这时可以将q1中的a,b两个元素全部dequeue并存入q2中,这时q2中元素为a,b,对q1再做一次dequeue操作即可得到c。
3.如果继续做push操作,比如插入d,f,则把d,f插入到q2中,
4.此时若要做pop操作,则做步骤2
5.以此类推,就实现了用两个队列来实现一个栈的目的。
注意在此过程中,新push进来的元素总是插入到非空队列中,空队列则用来保存pop操作之后的那些元素,那么此时空队列不为空了,原来的非空队列变为空了,总是这样循环。
对于push和pop操作,其时间为O(n).