题目
SDUQD 旁边的滨海公园有 x 条长凳。第 i 个长凳上坐着 a_i 个人。这时候又有 y 个人将来到公园,他们将选择坐在某些公园中的长凳上,那么当这 y 个人坐下后,记k = 所有椅子上的人数的最大值,那么k可能的最大值mx和最小值mn分别是多少。
Input
第一行包含一个整数 x (1 <= x <= 100) 表示公园中长椅的数目
第二行包含一个整数 y (1 <= y <= 1000) 表示有 y 个人来到公园
接下来 x 个整数 a_i (1<=a_i<=100),表示初始时公园长椅上坐着的人数
Output
输出 mn 和 mx
Input Example
3
7
1
6
1
Output Example
6 13
样例解释
最初三张椅子的人数分别为 1 6 1
接下来来了7个人。
可能出现的情况为{1 6 8},{1,7,7},…,{8,6,1}
相对应的k分别为8,7,…,8
其中,状态{1,13,1}的k = 13,为mx
状态{4,6,5}和状态{5,6,4}的k = 6,为mn
思路
1、主要难点在求mn,先求与最大值补齐的位置数sum,再用(y-sum+x-1)/x求在补齐位置数上多增的位置数,再加上mx即得mn
错误
1、求mn时,不可用(y-sum)/x+1求补齐的位置数,因为当补齐的人数恰好等于座位数时应该mn=mx+1,而若用该公式算则得到mn=mx+2
2、注意到虽然对于这个x=3,故x-1=2,但对于一般情况要写成x-1,不要错写成2
代码
#include<iostream>
using namespace std;
const int maxn=110;
int a[maxn];
int inf=1e9;
int main()
{
int x,y,mx,mn,sum=0;
cin>>x;
cin>>y;
mx=0;
for(int i=0;i<x;i++)
{
cin>>a[i];
if(a[i]>mx)
mx=a[i];
}
for(int i=0;i<x;i++)
sum+=mx-a[i];
if(sum>=y)
mn=mx;
else
mn=(y+x-1-sum)/x+mx;//注意不可以是直接(y-sum)/x+1+mx,考虑到当恰好每个椅子都多座一个人时mx应+1而非+2
cout<<mn<<' '<<mx+y<<endl;
return 0;
}