随机过程基础内容

本文介绍了随机过程的基本概念,将其定义为不同时刻的随机变量集合,并探讨了确定性信号与随机信号的区别。随机信号的描述方式包括随机变量、分布函数和密度函数。进一步解释了数学期望、均方差和方差作为随机过程的统计描述。此外,还讨论了自相关函数和互相关函数,用于描述信号间的依赖关系。
摘要由CSDN通过智能技术生成

基本概念

随机过程不是一个确定的时间信号,而是一个过程,为了更好的理解这个过程,我们可以理解随机过程为在不同时刻的随机变量的集合。我们通过掌握随机变量的概率密度或者分布函数来了解这个随机过程。

  • 信号的分类
    确定性信号:随着时间而确定的变化。比如下面的阶跃信号
    在这里插入图片描述
    随机信号:在任何时间都不知道具体的值,只能用概率来描述。

  • 随机信号的描述方式:这里是最容易搞混的
    例如下图举个例子(一段描述随机信号的文字种出现了很多定义,现在来理解一下这些名称)

    随机变量:θ 就是会随机变化的值
    分布函数: f(θ) 是随机变量θ的函数,横轴是输出值,纵轴是小于横轴x的值的概率的积分。她的值是不会减的。
    密度函数:是也是随机变量θ的函数。横轴是输出值,纵轴是概率。密度函数的总积分为1。
    随机信号: {S(t)} 是随时间变换的函数,里面有一个随机变量,使得这个函数在任何时刻都不确定最后的值了
    在这里插入图片描述

  • <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值