基本概念
随机过程不是一个确定的时间信号,而是一个过程,为了更好的理解这个过程,我们可以理解随机过程为在不同时刻的随机变量的集合。我们通过掌握随机变量的概率密度或者分布函数来了解这个随机过程。
-
信号的分类
确定性信号:随着时间而确定的变化。比如下面的阶跃信号
随机信号:在任何时间都不知道具体的值,只能用概率来描述。 -
随机信号的描述方式:这里是最容易搞混的
例如下图举个例子(一段描述随机信号的文字种出现了很多定义,现在来理解一下这些名称)随机变量:θ 就是会随机变化的值
分布函数: f(θ) 是随机变量θ的函数,横轴是输出值,纵轴是小于横轴x的值的概率的积分。她的值是不会减的。
密度函数:是也是随机变量θ的函数。横轴是输出值,纵轴是概率。密度函数的总积分为1。
随机信号: {S(t)} 是随时间变换的函数,里面有一个随机变量,使得这个函数在任何时刻都不确定最后的值了
<