python数据可视化玩转Matplotlib subplot子图操作,四个子图(一包四),三个子图,子图拉伸

文章介绍了如何使用Python的Matplotlib库创建和管理子图,包括创建子图的基本步骤,如使用`subplots()`函数,以及如何调整子图的大小、间距和位置。通过示例代码展示了如何在子图中绘制散点图和线图,并利用GridSpec对象实现更复杂的布局。此外,还讨论了`figsize`、`wspace`和`hspace`参数在调整子图布局中的应用。
摘要由CSDN通过智能技术生成

目录

一、创建子图

1.1 下图是绘制的子图:

1.2 代码释义:

二、绘制子图

2.1 代码引入

2.2 图形绘制

三、子图布局

3.1 子图布局说明

四、子图大小

4.1 子图大小调整

五、子图间距

5.1 子图代码调整

六、子图位置

6.1 代码引入

6.2 完整代码

6.3 完整代码

总结




大锤爱编程的博客_CSDN博客-大数据,Go,数据分析领域博主

Matplotlib是一个流行的Python可视化库,它提供了许多功能来创建各种类型的图表。其中一个功能是子图,它允许您在单个图表中绘制多个图。

一、创建子图

要创建子图,请使用plt.subplots()函数。该函数接受三个参数:行数、列数和子图编号。以下是一个简单的示例:

import matplotlib.pyplot as plt

fig, axs = plt.subplots(2, 2)

这将创建一个2x2的网格,其中包含4个子图。每个子图都有一个唯一的编号,可以在axs数组中访问。例如,要访问第一个子图,请使用axs[0, 0]

以下是一个示例代码,用于绘制2x2网格,其中每个子图都随机放置一个图形:

import matplotlib.pyplot as plt
import numpy as np

# 创建一个2x2的网格
fig, axs = plt.subplots(2, 2)

# 在每个子图中绘制一个图形
for ax in axs.flat:
    # 随机生成一些数据
    x = np.random.rand(100)
    y = np.random.rand(100)
    # 绘制散点图
    ax.scatter(x, y)

# 显示图形
plt.show()

1.1 下图是绘制的子图:

1.2 代码释义:

注释:

  • 导入必要的库:我们需要使用matplotlib和numpy库来生成散点图和随机数。
  • 创建一个2x2的网格:我们使用subplot()函数创建一个2x2的子图,该函数返回一个Figure对象fig和一个Axes对象数组axs,它包含四个子图,第一个参数2表示行数,第二个参数2表示列数。
  • 在每个子图中绘制一个图形:我们使用for循环遍历每个子图对象,对每个子图生成随机数据,使用scatter()函数在子图中绘制散点图。使用a
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大锤爱编程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值